A characterization of linear automorphisms of the Euclidean ball

Hidetaka Hamada; Tatsuhiro Honda

Annales Polonici Mathematici (1999)

  • Volume: 72, Issue: 1, page 79-85
  • ISSN: 0066-2216

Abstract

top
Let B be the open unit ball for a norm on n . Let f:B → B be a holomorphic map with f(0) = 0. We consider a condition implying that f is linear on n . Moreover, in the case of the Euclidean ball , we show that f is a linear automorphism of under this condition.

How to cite

top

Hamada, Hidetaka, and Honda, Tatsuhiro. "A characterization of linear automorphisms of the Euclidean ball." Annales Polonici Mathematici 72.1 (1999): 79-85. <http://eudml.org/doc/262853>.

@article{Hamada1999,
abstract = {Let B be the open unit ball for a norm on $ℂ^n$. Let f:B → B be a holomorphic map with f(0) = 0. We consider a condition implying that f is linear on $ℂ^n$. Moreover, in the case of the Euclidean ball , we show that f is a linear automorphism of under this condition.},
author = {Hamada, Hidetaka, Honda, Tatsuhiro},
journal = {Annales Polonici Mathematici},
keywords = {automorphism; complex extreme point; totally real; non-pluripolar; Schwarz lemma; complex extreme points},
language = {eng},
number = {1},
pages = {79-85},
title = {A characterization of linear automorphisms of the Euclidean ball},
url = {http://eudml.org/doc/262853},
volume = {72},
year = {1999},
}

TY - JOUR
AU - Hamada, Hidetaka
AU - Honda, Tatsuhiro
TI - A characterization of linear automorphisms of the Euclidean ball
JO - Annales Polonici Mathematici
PY - 1999
VL - 72
IS - 1
SP - 79
EP - 85
AB - Let B be the open unit ball for a norm on $ℂ^n$. Let f:B → B be a holomorphic map with f(0) = 0. We consider a condition implying that f is linear on $ℂ^n$. Moreover, in the case of the Euclidean ball , we show that f is a linear automorphism of under this condition.
LA - eng
KW - automorphism; complex extreme point; totally real; non-pluripolar; Schwarz lemma; complex extreme points
UR - http://eudml.org/doc/262853
ER -

References

top
  1. [1] A. Andreotti and G. A. Fredricks, Embeddability of real analytic Cauchy-Riemann manifolds, Ann. Scuola Norm. Sup. Pisa 6 (1979), 285-304. Zbl0449.32008
  2. [2] T. J. Barth, The Kobayashi indicatrix at the center of a circular domain, Proc. Amer. Math. Soc. 88 (1983), 527-530. Zbl0494.32008
  3. [3] S. Dineen, The Schwarz Lemma, Oxford Math. Monographs, 1989. Zbl0708.46046
  4. [4] H. Hamada, A Schwarz lemma in several complex variables, in: Proc. Third Internat. Colloq. on Finite or Infinite Dimensional Complex Analysis, Seoul, Korea, 1995, 105-110. 
  5. [5] H. Hamada, A Schwarz lemma on complex ellipsoids, Ann. Polon. Math. 67 (1997), 269-275. Zbl0948.32007
  6. [6] H. Hamada and J. Kajiwara, Ensembles totalement réels et domaines pseudoconvexes, Mem. Fac. Sci. Kyushu Univ. 39 (1985), 243-247. Zbl0581.32011
  7. [7] T. Honda, A special version of the Schwarz lemma on an infinite dimensional domain, Rend. Mat. Accad. Lincei 9 (1997), 107-110. Zbl0890.32012
  8. [8] T. Honda, Linear isometries on Hilbert spaces, Complex Variables, to appear. 
  9. [9] M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, de Gruyter, Berlin, 1993. Zbl0789.32001
  10. [10] K. H. Shon, On Riemann domains containing a certain real domain, Complex Variables 31 (1996), 27-35. Zbl0865.32010
  11. [11] E. Vesentini, Variations on a theme of Carathéodory, Ann. Scuola Norm. Sup. Pisa 7 (1979), 39-68. Zbl0413.46039
  12. [12] E. Vesentini, Complex geodesics, Compositio Math. 44 (1981), 375-394. Zbl0488.30015
  13. [13] J. P. Vigué, Un lemme de Schwarz pour les domaines bornés symétriques irréductibles et certains domaines bornés strictement convexes, Indiana Univ. Math. J. 40 (1991), 239-304. Zbl0733.32025
  14. [14] J. P. Vigué, Le lemme de Schwarz et la caractérisation des automorphismes analytiques, Astérisque 217 (1993), 241-249. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.