Combinatorial lemmas for polyhedrons I

Adam Idzik; Konstanty Junosza-Szaniawski

Discussiones Mathematicae Graph Theory (2006)

  • Volume: 26, Issue: 3, page 439-338
  • ISSN: 2083-5892

Abstract

top
We formulate general boundary conditions for a labelling of vertices of a triangulation of a polyhedron by vectors to assure the existence of a balanced simplex. The condition is not for each vertex separately, but for a set of vertices of each boundary simplex. This allows us to formulate a theorem, which is more general than the Sperner lemma and theorems of Shapley; Idzik and Junosza-Szaniawski; van der Laan, Talman and Yang. A generalization of the Poincaré-Miranda theorem is also derived.

How to cite

top

Adam Idzik, and Konstanty Junosza-Szaniawski. "Combinatorial lemmas for polyhedrons I." Discussiones Mathematicae Graph Theory 26.3 (2006): 439-338. <http://eudml.org/doc/270349>.

@article{AdamIdzik2006,
abstract = {We formulate general boundary conditions for a labelling of vertices of a triangulation of a polyhedron by vectors to assure the existence of a balanced simplex. The condition is not for each vertex separately, but for a set of vertices of each boundary simplex. This allows us to formulate a theorem, which is more general than the Sperner lemma and theorems of Shapley; Idzik and Junosza-Szaniawski; van der Laan, Talman and Yang. A generalization of the Poincaré-Miranda theorem is also derived.},
author = {Adam Idzik, Konstanty Junosza-Szaniawski},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {b-balanced simplex; labelling; polyhedron; simplicial complex; Sperner lemma; convex polytope; triangulation; Sperner's lemma; balanced simplex},
language = {eng},
number = {3},
pages = {439-338},
title = {Combinatorial lemmas for polyhedrons I},
url = {http://eudml.org/doc/270349},
volume = {26},
year = {2006},
}

TY - JOUR
AU - Adam Idzik
AU - Konstanty Junosza-Szaniawski
TI - Combinatorial lemmas for polyhedrons I
JO - Discussiones Mathematicae Graph Theory
PY - 2006
VL - 26
IS - 3
SP - 439
EP - 338
AB - We formulate general boundary conditions for a labelling of vertices of a triangulation of a polyhedron by vectors to assure the existence of a balanced simplex. The condition is not for each vertex separately, but for a set of vertices of each boundary simplex. This allows us to formulate a theorem, which is more general than the Sperner lemma and theorems of Shapley; Idzik and Junosza-Szaniawski; van der Laan, Talman and Yang. A generalization of the Poincaré-Miranda theorem is also derived.
LA - eng
KW - b-balanced simplex; labelling; polyhedron; simplicial complex; Sperner lemma; convex polytope; triangulation; Sperner's lemma; balanced simplex
UR - http://eudml.org/doc/270349
ER -

References

top
  1. [1] A.D. Alexandrov, Convex Polyhedra (Springer, Berlin, 2005). 
  2. [2] R.W. Freund, Variable dimension complexes Part II: A unified approach to some combinatorial lemmas in topology, Math. Oper. Res. 9 (1984) 498-509, doi: 10.1287/moor.9.4.498. Zbl0556.57015
  3. [3] C.B. Garcia, A hybrid algorithm for the computation of fixed points, Manag. Sci. 22 (1976) 606-613, doi: 10.1287/mnsc.22.5.606. Zbl0358.90032
  4. [4] B. Grunbaum, Convex Polytopes (Wiley, London, 1967). 
  5. [5] A. Idzik and K. Junosza-Szaniawski, Combinatorial lemmas for nonoriented pseudomanifolds, Top. Meth. in Nonlin. Anal. 22 (2003) 387-398. Zbl1038.05010
  6. [6] A. Idzik and K. Junosza-Szaniawski, Combinatorial lemmas for polyhedrons, Discuss. Math. Graph Theory 25 (2005) 95-102, doi: 10.7151/dmgt.1264. Zbl1075.52502
  7. [7] B. Knaster, C. Kuratowski and S. Mazurkiewicz, Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe, Fund. Math. 14 (1929) 132-137. Zbl55.0972.01
  8. [8] W. Kulpa, Poincaré and Domain Invariance Theorem, Acta Univ. Carolinae - Mathematica et Physica 39 (1998) 127-136. Zbl1007.54040
  9. [9] G. van der Laan, D. Talman and Z. Yang, Existence of balanced simplices on polytopes, J. Combin. Theory (A) 96 (2001) 25-38, doi: 10.1006/jcta.2001.3178. Zbl1091.52007
  10. [10] H. Scarf, The approximation of fixed points of a continuous mapping, SIAM J. Appl. Math. 15 (1967) 1328-1343, doi: 10.1137/0115116. Zbl0153.49401
  11. [11] L.S. Shapley, On balanced games without side payments, in: T.C. Hu and S.M. Robinson (eds.), Mathematical Programming, New York: Academic Press (1973) 261-290. Zbl0267.90100
  12. [12] E. Sperner, Neuer Beweis für die Invarianz der Dimensionszahl und des Gebiets, Abh. Math. Sem. Univ. Hamburg 6 (1928) 265-272, doi: 10.1007/BF02940617. Zbl54.0614.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.