Combinatorial lemmas for polyhedrons

Adam Idzik; Konstanty Junosza-Szaniawski

Discussiones Mathematicae Graph Theory (2005)

  • Volume: 25, Issue: 1-2, page 95-102
  • ISSN: 2083-5892

Abstract

top
We formulate general boundary conditions for a labelling to assure the existence of a balanced n-simplex in a triangulated polyhedron. Furthermore we prove a Knaster-Kuratowski-Mazurkiewicz type theorem for polyhedrons and generalize some theorems of Ichiishi and Idzik. We also formulate a necessary condition for a continuous function defined on a polyhedron to be an onto function.

How to cite

top

Adam Idzik, and Konstanty Junosza-Szaniawski. "Combinatorial lemmas for polyhedrons." Discussiones Mathematicae Graph Theory 25.1-2 (2005): 95-102. <http://eudml.org/doc/270665>.

@article{AdamIdzik2005,
abstract = {We formulate general boundary conditions for a labelling to assure the existence of a balanced n-simplex in a triangulated polyhedron. Furthermore we prove a Knaster-Kuratowski-Mazurkiewicz type theorem for polyhedrons and generalize some theorems of Ichiishi and Idzik. We also formulate a necessary condition for a continuous function defined on a polyhedron to be an onto function.},
author = {Adam Idzik, Konstanty Junosza-Szaniawski},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {KKM covering; labelling; primoid; pseudomanifold; simplicial complex; Sperner lemma},
language = {eng},
number = {1-2},
pages = {95-102},
title = {Combinatorial lemmas for polyhedrons},
url = {http://eudml.org/doc/270665},
volume = {25},
year = {2005},
}

TY - JOUR
AU - Adam Idzik
AU - Konstanty Junosza-Szaniawski
TI - Combinatorial lemmas for polyhedrons
JO - Discussiones Mathematicae Graph Theory
PY - 2005
VL - 25
IS - 1-2
SP - 95
EP - 102
AB - We formulate general boundary conditions for a labelling to assure the existence of a balanced n-simplex in a triangulated polyhedron. Furthermore we prove a Knaster-Kuratowski-Mazurkiewicz type theorem for polyhedrons and generalize some theorems of Ichiishi and Idzik. We also formulate a necessary condition for a continuous function defined on a polyhedron to be an onto function.
LA - eng
KW - KKM covering; labelling; primoid; pseudomanifold; simplicial complex; Sperner lemma
UR - http://eudml.org/doc/270665
ER -

References

top
  1. [1] T. Ichiishi and A. Idzik, Closed coverings of convex polyhedra, Internat. J. Game Theory 20 (1991) 161-169, doi: 10.1007/BF01240276. Zbl0761.52010
  2. [2] T. Ichiishi and A. Idzik, Equitable allocation of divisible goods, J. Math. Econom. 32 (1998) 389-400, doi: 10.1016/S0304-4068(98)00053-6. Zbl1016.91067
  3. [3] A. Idzik and K. Junosza-Szaniawski, Combinatorial lemmas for nonoriented pseudomanifolds, Top. Meth. in Nonlin. Anal. 22 (2003) 387-398. Zbl1038.05010
  4. [4] B. Knaster, C. Kuratowski and S. Mazurkiewicz, Ein beweis des fixpunktsatzes für n-dimensionale simplexe, Fund. Math. 14 (1929) 132-137. Zbl55.0972.01
  5. [5] W. Kulpa, Poincaré and domain invariance theorem, Acta Univ. Carolinae - Mathematica et Physica 39 (1998) 127-136. Zbl1007.54040
  6. [6] G. van der Laan, D. Talman and Z. Yang, Intersection theorems on polytypes, Math. Programming 84 (1999) 333-352. 
  7. [7] G. van der Laan, D. Talman and Z. Yang, Existence of balanced simplices on polytopes, J. Combin. Theory (A) 96 (2001) 25-38, doi: 10.1006/jcta.2001.3178. Zbl1091.52007
  8. [8] L.S. Shapley, On balanced games without side payments, in: T.C. Hu and S.M. Robinson (eds.), Mathematical Programming (New York: Academic Press, 1973) 261-290. Zbl0267.90100
  9. [9] E. Sperner, Neuer beweis für die invarianz der dimensionszahl und des gebiets, Abh. Math. Sem. Univ. Hamburg 6 (1928) 265-272, doi: 10.1007/BF02940617. Zbl54.0614.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.