Generalized list colourings of graphs
Mieczysław Borowiecki; Ewa Drgas-Burchardt; Peter Mihók
Discussiones Mathematicae Graph Theory (1995)
- Volume: 15, Issue: 2, page 185-193
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topMieczysław Borowiecki, Ewa Drgas-Burchardt, and Peter Mihók. "Generalized list colourings of graphs." Discussiones Mathematicae Graph Theory 15.2 (1995): 185-193. <http://eudml.org/doc/270352>.
@article{MieczysławBorowiecki1995,
abstract = {We prove: (1) that $ch_P(G) - χ_P(G)$ can be arbitrarily large, where $ch_P(G)$ and $χ_P(G)$ are P-choice and P-chromatic numbers, respectively, (2) the (P,L)-colouring version of Brooks’ and Gallai’s theorems.},
author = {Mieczysław Borowiecki, Ewa Drgas-Burchardt, Peter Mihók},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {hereditary property of graphs; list colouring; vertex partition number; colouring; hereditary property; chromatic number},
language = {eng},
number = {2},
pages = {185-193},
title = {Generalized list colourings of graphs},
url = {http://eudml.org/doc/270352},
volume = {15},
year = {1995},
}
TY - JOUR
AU - Mieczysław Borowiecki
AU - Ewa Drgas-Burchardt
AU - Peter Mihók
TI - Generalized list colourings of graphs
JO - Discussiones Mathematicae Graph Theory
PY - 1995
VL - 15
IS - 2
SP - 185
EP - 193
AB - We prove: (1) that $ch_P(G) - χ_P(G)$ can be arbitrarily large, where $ch_P(G)$ and $χ_P(G)$ are P-choice and P-chromatic numbers, respectively, (2) the (P,L)-colouring version of Brooks’ and Gallai’s theorems.
LA - eng
KW - hereditary property of graphs; list colouring; vertex partition number; colouring; hereditary property; chromatic number
UR - http://eudml.org/doc/270352
ER -
References
top- [1] M. Borowiecki and P. Mihók, Hereditary Properties of Graphs, in: Advances in Graph Theory (Vishwa International Publications, 1991) 41-68.
- [2] R.L. Brooks, On colouring the nodes of a network, Proc. Cambridge Phil. Soc. 37 (1941) 194-197, doi: 10.1017/S030500410002168X. Zbl0027.26403
- [3] P. Erdős, A.L. Rubin and H. Taylor, Choosability in graphs, in: Proc. West Coast Conf. on Combin., Graph Theory and Computing, Congressus Numerantium XXVI (1979) 125-157.
- [4] T. Gallai, Kritiche Graphen I, Publ. Math. Inst. Hung. Acad. Sci. 8 (1963) 373-395. Zbl0144.23204
- [5] F. Harary, Graph Theory (Addison Wesley, Reading, Mass. 1969).
- [6] V.G. Vizing, Colouring the vertices of a graph in prescribed colours (in Russian), Diskret. Analiz 29 (1976) 3-10.
Citations in EuDML Documents
top- Mieczysław Borowiecki, Izak Broere, Peter Mihók, On generalized list colourings of graphs
- Peter Mihók, Riste Skrekovski, Gallai's innequality for critical graphs of reducible hereditary properties
- Zsolt Tuza, Graph colorings with local constraints - a survey
- Mieczysław Borowiecki, Izak Broere, Marietjie Frick, Peter Mihók, Gabriel Semanišin, A survey of hereditary properties of graphs
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.