On the disc-convexity of complex Banach manifolds

Do Duc Thai; Nguyen Le Huong

Annales Polonici Mathematici (1998)

  • Volume: 69, Issue: 1, page 1-11
  • ISSN: 0066-2216

Abstract

top
The Banach hyperbolicity and disc-convexity of complex Banach manifolds and their relations are investigated.

How to cite

top

Do Duc Thai, and Nguyen Le Huong. "On the disc-convexity of complex Banach manifolds." Annales Polonici Mathematici 69.1 (1998): 1-11. <http://eudml.org/doc/270361>.

@article{DoDucThai1998,
abstract = {The Banach hyperbolicity and disc-convexity of complex Banach manifolds and their relations are investigated.},
author = {Do Duc Thai, Nguyen Le Huong},
journal = {Annales Polonici Mathematici},
keywords = {Banach manifold; hyperbolic; disc-convex; disc-convexity},
language = {eng},
number = {1},
pages = {1-11},
title = {On the disc-convexity of complex Banach manifolds},
url = {http://eudml.org/doc/270361},
volume = {69},
year = {1998},
}

TY - JOUR
AU - Do Duc Thai
AU - Nguyen Le Huong
TI - On the disc-convexity of complex Banach manifolds
JO - Annales Polonici Mathematici
PY - 1998
VL - 69
IS - 1
SP - 1
EP - 11
AB - The Banach hyperbolicity and disc-convexity of complex Banach manifolds and their relations are investigated.
LA - eng
KW - Banach manifold; hyperbolic; disc-convex; disc-convexity
UR - http://eudml.org/doc/270361
ER -

References

top
  1. [1] R. Brody, Compact manifolds and hyperbolicity, Trans. Amer. Math. Soc. 235 (1978), 213-219. Zbl0416.32013
  2. [2] K. Diederich and N. Sibony, Strange complex structures on Euclidean space, J. Reine Angew. Math. 311/312 (1979), 397-407. Zbl0413.32001
  3. [3] G. Fischer, Complex Analytic Geometry, Lecture Notes in Math. 538, Springer, 1976. Zbl0343.32002
  4. [4] A. Hirschowitz, Pseudoconvexité au-dessus d'espaces plus ou moins homogènes, Invent. Math. 26 (1974), 303-322. Zbl0275.32009
  5. [5] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Dekker, 1970. Zbl0207.37902
  6. [6] S. Kobayashi, Intrinsic distances, measures and geometric function theory, Bull. Amer. Math. Soc. 82 (1976), 357-416. Zbl0346.32031
  7. [7] S. Lang, Introduction to Complex Hyperbolic Spaces, Springer, 1987. Zbl0628.32001
  8. [8] P. Mazet, Analytic Sets in Locally Convex Spaces, North-Holland Math. Stud. 121, North-Holland, 1987. 
  9. [9] J. P. Ramis, Sous-ensembles Analytiques d'une Variété Banachique Complexe, Ergeb. Math. Grenzgeb. 53, Springer, 1970. Zbl0212.42802
  10. [10] B. Shabat, Introduction to Complex Analysis, Part II, Functions of Several Variables, Transl. Math. Monographs 110, Amer. Math. Soc., 1992. Zbl0799.32001
  11. [11] B. Shiffman, Extension of holomorphic maps into hermitian manifolds, Math. Ann. 194 (1971), 249-258. Zbl0213.36001
  12. [12] N. Sibony, Prolongement des fonctions holomorphes bornées et métrique de Carathéodory, Invent. Math. 29 (1975), 205-230. Zbl0333.32011
  13. [13] B. D. Tac, Extending holomorphic maps in infinite dimensions, Ann. Polon. Math. 54 (1991), 241-253. Zbl0736.46042
  14. [14] D. D. Thai, Royden-Kobayashi pseudometric and tautness of normalizations of complex spaces, Boll. Un. Mat. Ital. A (7) 5 (1991), 147-156. Zbl0742.32018
  15. [15] H. Toruńczyk, Smooth partitions of unity on some non-separable Banach spaces, Studia Math. 66 (1973), 44-51. Zbl0251.46022
  16. [16] T. Urata, The hyperbolicity of complex analytic spaces, Bull. Aichi Univ. of Education 31 (1982), 65-75. Zbl1267.32005
  17. [17] E. Vesentini, Invariant distances and invariant differential metrics in locally convex spaces, in: Spectral Theory, Banach Center Publ. 8, PWN-Polish Sci. Publ., Warszawa, 1982, 493-512. Zbl0505.32020
  18. [18] M. Zaĭdenberg, The Picard theorem and hyperbolicity, Siberian Math. J. 24 (1983), 858-867 (English transl.). Zbl0579.32039
  19. [19] M. Zaĭdenberg, S. Kreĭn, P. Kuchment and A. Pankov, Banach bundles and linear operators, Uspekhi Mat. Nauk 30 (1975), no. 5, 101-157 (in Russian). Zbl0317.47018

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.