Page 1 Next

## Displaying 1 – 20 of 50

Showing per page

### A finiteness result on the ring of analytic functions defined on a Banach space

Studia Mathematica

### A Riemann Mapping Theorem for Bounded Symmetric Domains in Complex Banach Spaces.

Mathematische Zeitschrift

### An example of a Banach space V such that all the degree ≥ 2 hypersurfaces of P(V) are singular.

Extracta Mathematicae

Here we give an example of a Banach space V such that all the degree ≥ 2 hypersurfaces of P(V) are singular.

### Analytic subsets of products of infinite-dimensional projective spaces.

Georgian Mathematical Journal

### Approximation of entire functions of slow growth on compact sets

Archivum Mathematicum

In the present paper, we study the polynomial approximation of entire functions of several complex variables. The characterizations of generalized order and generalized type of entire functions of slow growth have been obtained in terms of approximation and interpolation errors.

### Approximation of holomorphic functions in Banach spaces admitting a Schauder decomposition

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Let $X$ be a complex Banach space. Recall that $X$ admits afinite-dimensional Schauder decompositionif there exists a sequence ${\left\{{X}_{n}\right\}}_{n=1}^{\infty }$ of finite-dimensional subspaces of $X,$ such that every $x\in X$ has a unique representation of the form $x={\sum }_{n=1}^{\infty }{x}_{n},$ with ${x}_{n}\in {X}_{n}$ for every $n.$ The finite-dimensional Schauder decomposition is said to beunconditionalif, for every $x\in X,$ the series $x={\sum }_{n=1}^{\infty }{x}_{n},$ which represents $x,$ converges unconditionally, that is, ${\sum }_{n=1}^{\infty }{x}_{\pi \left(n\right)}$ converges for every permutation $\pi$ of the integers. For short, we say that $X$ admits an unconditional F.D.D.We...

### Automorphismes analytiques des produits continus de domaines bornés

Annales scientifiques de l'École Normale Supérieure

### Bounde Reinhardt domains in Banach spaces

Compositio Mathematica

### Branched coverings and minimal free resolution for infinite-dimensional complex spaces.

Georgian Mathematical Journal

### Croissance des fonctions plurisousharmoniques en dimension infinie

Annales de l'institut Fourier

Les ensembles polaires dans ${\mathbf{C}}^{n}$, c’est-à-dire les ensembles où une fonction plurisousharmonique qui n’est pas $-\infty$ identiquement admet cette valeur, apparaissent comme des ensembles exceptionnels dans beaucoup de problèmes en analyse complexe. Par exemple, la croissance d’une fonction plurisousharmonique en une variable $y$ quand une autre variable $x$ est fixée est essentiellement la même pour tout $x$ sauf quand $x$ appartient à un ensemble polaire. Dans l’article un résultat très précis et général de cette...

### Deformation kompakter komplexer Mannigfaltigkeiten.

Mathematische Annalen

### Der Satz von Kuranishi für kompakte komplexe Räume.

Inventiones mathematicae

### Determining Boundary Sets of Bounded Symmetric Domains.

Manuscripta mathematica

### Ein Beitrag zur Lipschitz-Saturation im unendlichdimensionalen Fall

Studia Mathematica

### Ein Beitrag zur Whitney-Regularität im unendlichdimensionalen Fall.

Commentarii mathematici Helvetici

### Embedding of Stein spaces into sequence spaces.

Manuscripta mathematica

### Espaces de Banach-Stein

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

### Extension of separately holomorphic functions defined in non-open sets in the infinite dimensional case

Annales Polonici Mathematici

### Holomorphic extension from the sphere to the ball in Hilbert space

Annales Polonici Mathematici

### Holomorphic functions on locally convex topological vector spaces. II. Pseudo convex domains

Annales de l'institut Fourier

In this article we discuss the relationship between domains of existence domains of holomorphy, holomorphically convex domains, pseudo convex domains, in the context of locally convex topological vector spaces. By using the method of Hirschowitz for ${\Pi }_{n=1}^{\infty }\mathbf{C}$ and the method used for Banach spaces with a basis we prove generalisations of the Cartan-Thullen-Oka-Norguet-Bremmerman theorem for finitely polynomially convex domains in a variety of locally convex spaces which include the following:1) $N$-projective...

Page 1 Next