A Levi Problem on Two-Dimensional Complex Manifolds.
We consider a convexity notion for complex spaces with respect to a holomorphic line bundle over . This definition has been introduced by Grauert and, when is analytically trivial, we recover the standard holomorphic convexity. In this circle of ideas, we prove the counterpart of the classical Remmert’s reduction result for holomorphically convex spaces. In the same vein, we show that if separates each point of , then can be realized as a Riemann domain over the complex projective space...
Si studiano «combinazioni convesse complesse» per mappe olomorfe dal disco unità di in un dominio convesso limitato di uno spazio di Banach complesso , e se ne traggono conseguenze sul carattere globale della non unicità per le geodetiche complesse di .