Pseudo-BCH-algebras

Andrzej Walendziak

Discussiones Mathematicae - General Algebra and Applications (2015)

  • Volume: 35, Issue: 1, page 5-19
  • ISSN: 1509-9415

Abstract

top
The notion of pseudo-BCH-algebras is introduced, and some of their properties are investigated. Conditions for a pseudo-BCH-algebra to be a pseudo-BCI-algebra are given. Ideals and minimal elements in pseudo-BCH-algebras are considered.

How to cite

top

Andrzej Walendziak. "Pseudo-BCH-algebras." Discussiones Mathematicae - General Algebra and Applications 35.1 (2015): 5-19. <http://eudml.org/doc/270365>.

@article{AndrzejWalendziak2015,
abstract = {The notion of pseudo-BCH-algebras is introduced, and some of their properties are investigated. Conditions for a pseudo-BCH-algebra to be a pseudo-BCI-algebra are given. Ideals and minimal elements in pseudo-BCH-algebras are considered.},
author = {Andrzej Walendziak},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {(pseudo-)BCK/BCI/BCH-algebra; minimal element; (closed) ideal; centre},
language = {eng},
number = {1},
pages = {5-19},
title = {Pseudo-BCH-algebras},
url = {http://eudml.org/doc/270365},
volume = {35},
year = {2015},
}

TY - JOUR
AU - Andrzej Walendziak
TI - Pseudo-BCH-algebras
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2015
VL - 35
IS - 1
SP - 5
EP - 19
AB - The notion of pseudo-BCH-algebras is introduced, and some of their properties are investigated. Conditions for a pseudo-BCH-algebra to be a pseudo-BCI-algebra are given. Ideals and minimal elements in pseudo-BCH-algebras are considered.
LA - eng
KW - (pseudo-)BCK/BCI/BCH-algebra; minimal element; (closed) ideal; centre
UR - http://eudml.org/doc/270365
ER -

References

top
  1. [1] R.A. Borzooei, A.B. Saeid, A. Rezaei, A. Radfar and R. Ameri, On pseudo-BE-algebras, Discuss. Math. General Algebra and Appl. 33 (2013) 95-97. doi: 10.7151/dmgaa.1193 Zbl1305.06020
  2. [2] M.A. Chaudhry, On BCH-algebras, Math. Japonica 36 (1991) 665-676. Zbl0733.06008
  3. [3] W.A. Dudek and Y.B. Jun, Pseudo-BCI-algebras, East Asian Math. J. 24 (2008) 187-190. Zbl1149.06010
  4. [4] G. Dymek, Atoms and ideals of pseudo-BCI-algebras, Comment. Math. 52 (2012) 73-90. Zbl1294.06021
  5. [5] G. Dymek, p-semisimple pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 19 (2012) 461-474. 
  6. [6] G. Georgescu and A. Iorgulescu, Pseudo-MV algebras: a noncommutative extension of MV algebras, in: The Proc. of the Fourth International Symp. on Economic Informatics (Bucharest, Romania, May 1999) 961-968. Zbl0985.06007
  7. [7] G. Georgescu and A. Iorgulescu, Pseudo-BL algebras: a noncommutative extension of BL algebras, in: Abstracts of the Fifth International Conference FSTA 2000 (Slovakia, February, 2000) 90-92. 
  8. [8] G. Georgescu and A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK algebras, in: Proc. of DMTCS'01: Combinatorics, Computability and Logic (Springer, London, 2001) 97-114. Zbl0986.06018
  9. [9] Q.P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes 11 (1983) 313-320. Zbl0579.03047
  10. [10] Y. Imai and K. Iséki, On axiom systems of propositional calculi XIV, Proc. Japan Academy 42 (1966) 19-22. Zbl0156.24812
  11. [11] K. Iséki, An algebra related with a propositional culculus, Proc. Japan Academy 42 (1966) 26-29. Zbl0207.29304
  12. [12] Y.B. Jun, H.S. Kim and J. Neggers, On pseudo-BCI ideals of pseudo-BCI-algebras, Matem. Vesnik 58 (2006) 39-46. Zbl1119.03068
  13. [13] Y.B. Jun, H.S. Kim and J. Neggers, Pseudo-d-algebras, Information Sciences 179 (2009) 1751-1759. doi: 10.1016/j.ins.2009.01.021 Zbl1179.06008
  14. [14] Y.H. Kim and K.S. So, On minimality in pseudo-BCI-algebras, Commun. Korean Math. Soc. 27 (2012) 7-13. doi: 10.4134/CKMS.2012.27.1.007 Zbl1244.06008
  15. [15] K.J. Lee and Ch.H. Park, Some ideals of pseudo-BCI-algebras, J. Appl. & Informatics 27 (2009) 217-231. 
  16. [16] J. Neggers and H.S. Kim, On d-algebras, Math. Slovaca 49 (1999) 19-26. 
  17. [17] A.B. Saeid and A. Namdar, On n-fold ideals in BCH-algebras and computation algorithms, World Applied Sciences Journal 7 (2009) 64-69. 
  18. [18] A. Wroński, BCK-algebras do not form a variety, Math. Japon. 28 (1983) 211-213. Zbl0518.06014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.