On branchwise commutative pseudo-BCH algebras

Andrzej Walendziak

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2017)

  • Volume: 71, Issue: 2
  • ISSN: 0365-1029

Abstract

top
Basic properties of branches of pseudo-BCH algebras are described. Next, the concept of a branchwise commutative pseudo-BCH algebra is introduced. Some conditions equivalent to branchwise commutativity are given. It is proved that every branchwise commutative pseudo-BCH algebra is a pseudo-BCI algebra.

How to cite

top

Andrzej Walendziak. "On branchwise commutative pseudo-BCH algebras." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 71.2 (2017): null. <http://eudml.org/doc/289788>.

@article{AndrzejWalendziak2017,
abstract = {Basic properties of branches of pseudo-BCH algebras are described. Next, the concept of a branchwise commutative pseudo-BCH algebra is introduced. Some conditions equivalent to branchwise commutativity are given. It is proved that every branchwise commutative pseudo-BCH algebra is a pseudo-BCI algebra.},
author = {Andrzej Walendziak},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {(Pseudo-)BCK/BCI/BCH-algebra; atom; branch; branchwise commutativity},
language = {eng},
number = {2},
pages = {null},
title = {On branchwise commutative pseudo-BCH algebras},
url = {http://eudml.org/doc/289788},
volume = {71},
year = {2017},
}

TY - JOUR
AU - Andrzej Walendziak
TI - On branchwise commutative pseudo-BCH algebras
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2017
VL - 71
IS - 2
SP - null
AB - Basic properties of branches of pseudo-BCH algebras are described. Next, the concept of a branchwise commutative pseudo-BCH algebra is introduced. Some conditions equivalent to branchwise commutativity are given. It is proved that every branchwise commutative pseudo-BCH algebra is a pseudo-BCI algebra.
LA - eng
KW - (Pseudo-)BCK/BCI/BCH-algebra; atom; branch; branchwise commutativity
UR - http://eudml.org/doc/289788
ER -

References

top
  1. Dudek, W. A., Jun, Y. B., Pseudo-BCI-algebras, East Asian Math. J. 24 (2008), 187-190. 
  2. Dudek, W. A., Zhang, X., Wang, Y., Ideals and atoms of BZ-algebras, Math. Slovaca 59 (2009), 387-404. 
  3. Dudek, W. A., Karamdin, B., Bhatti, S. A., Branches and ideals of weak BCCalgebras, Algebra Colloquium 18 (Special) (2011), 899-914. 
  4. Dymek, G., On two classes of pseudo-BCI-algebras, Discuss. Math. Gen. Algebra Appl. 31 (2011), 217-230. 
  5. Georgescu, G., Iorgulescu, A., Pseudo-MV algebras: a noncommutative extension of MV algebras, in: The Proc. of the Fourth International Symp. on Economic Informatics, Bucharest, Romania, May 1999, 961-968. 
  6. Georgescu, G., Iorgulescu, A., Pseudo-BL algebras: a noncommutative extension of BL algebras, in: Abstracts of the Fifth International Conference FSTA 2000, Slovakia, February 2000, 90-92. 
  7. Georgescu, G., Iorgulescu, A., Pseudo-BCK algebras: an extension of BCK algebras, in: Proc. of DMTCS’01: Combinatorics, Computability and Logic, Springer, London, 2001, 97-114. 
  8. Hu, Q. P., Li, X., On BCH-algebras, Math. Seminar Notes 11 (1983), 313-320. 
  9. Imai, Y., Iseki, K., On axiom systems of propositional calculi XIV, Proc. Japan Acad. Ser. A Math. Sci. 42 (1966), 19-22. 
  10. Iorgulescu A., Algebras of Logic as BCK-Algebras, Bucharest 2008. 
  11. Iorgulescu, A., New generalizations of BCI, BCK and Hilbert algebras - Part I, J. Mult.-Valued Logic Soft Comput. 27 (2016), 353-406. 
  12. Iorgulescu, A., New generalizations of BCI, BCK and Hilbert algebras - Part II, J. Mult.-Valued Logic Soft Comput. 27 (2016), 407-456. 
  13. Iseki, K., An algebra related with a propositional calculus, Proc. Japan Acad. Ser. A Math. Sci. 42 (1966), 26-29. 
  14. Walendziak, A., Pseudo-BCH-algebras, Discuss. Math. Gen. Algebra Appl. 35 (2015), 1-15. 
  15. Walendziak, A., On ideals of pseudo-BCH-algebras, Ann. Univ. Mariae Curie-Skłodowska Sect. A 70 (2016), 81-91. 
  16. Walendziak, A., Strong ideals and horizontal ideals in pseudo-BCH-algebras, Ann. Univ. Paedagog. Crac. Stud. Math. 15 (2016), 15-25. 
  17. Zhang, X., Ye, R., BZ-algebra and group, J. of Mathematical and Physical Sciences 29 (1995), 223-233. 
  18. Zhang, X., Wang, Y., Dudek, W. A., T-ideals in BZ-algebras and T-type BZ-algebras, Indian J. Pure Appl. Math. 34 (2003), 1559-1570. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.