On branchwise commutative pseudo-BCH algebras

Andrzej Walendziak

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2017)

  • Volume: 71, Issue: 2
  • ISSN: 0365-1029

Abstract

top
Basic properties of branches of pseudo-BCH algebras are described. Next, the concept of a branchwise commutative pseudo-BCH algebra is introduced. Some conditions equivalent to branchwise commutativity are given. It is proved that every branchwise commutative pseudo-BCH algebra is a pseudo-BCI algebra.

How to cite

top

Andrzej Walendziak. "On branchwise commutative pseudo-BCH algebras." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 71.2 (2017): null. <http://eudml.org/doc/289788>.

@article{AndrzejWalendziak2017,
abstract = {Basic properties of branches of pseudo-BCH algebras are described. Next, the concept of a branchwise commutative pseudo-BCH algebra is introduced. Some conditions equivalent to branchwise commutativity are given. It is proved that every branchwise commutative pseudo-BCH algebra is a pseudo-BCI algebra.},
author = {Andrzej Walendziak},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {(Pseudo-)BCK/BCI/BCH-algebra; atom; branch; branchwise commutativity},
language = {eng},
number = {2},
pages = {null},
title = {On branchwise commutative pseudo-BCH algebras},
url = {http://eudml.org/doc/289788},
volume = {71},
year = {2017},
}

TY - JOUR
AU - Andrzej Walendziak
TI - On branchwise commutative pseudo-BCH algebras
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2017
VL - 71
IS - 2
SP - null
AB - Basic properties of branches of pseudo-BCH algebras are described. Next, the concept of a branchwise commutative pseudo-BCH algebra is introduced. Some conditions equivalent to branchwise commutativity are given. It is proved that every branchwise commutative pseudo-BCH algebra is a pseudo-BCI algebra.
LA - eng
KW - (Pseudo-)BCK/BCI/BCH-algebra; atom; branch; branchwise commutativity
UR - http://eudml.org/doc/289788
ER -

References

top
  1. Dudek, W. A., Jun, Y. B., Pseudo-BCI-algebras, East Asian Math. J. 24 (2008), 187-190. 
  2. Dudek, W. A., Zhang, X., Wang, Y., Ideals and atoms of BZ-algebras, Math. Slovaca 59 (2009), 387-404. 
  3. Dudek, W. A., Karamdin, B., Bhatti, S. A., Branches and ideals of weak BCCalgebras, Algebra Colloquium 18 (Special) (2011), 899-914. 
  4. Dymek, G., On two classes of pseudo-BCI-algebras, Discuss. Math. Gen. Algebra Appl. 31 (2011), 217-230. 
  5. Georgescu, G., Iorgulescu, A., Pseudo-MV algebras: a noncommutative extension of MV algebras, in: The Proc. of the Fourth International Symp. on Economic Informatics, Bucharest, Romania, May 1999, 961-968. 
  6. Georgescu, G., Iorgulescu, A., Pseudo-BL algebras: a noncommutative extension of BL algebras, in: Abstracts of the Fifth International Conference FSTA 2000, Slovakia, February 2000, 90-92. 
  7. Georgescu, G., Iorgulescu, A., Pseudo-BCK algebras: an extension of BCK algebras, in: Proc. of DMTCS’01: Combinatorics, Computability and Logic, Springer, London, 2001, 97-114. 
  8. Hu, Q. P., Li, X., On BCH-algebras, Math. Seminar Notes 11 (1983), 313-320. 
  9. Imai, Y., Iseki, K., On axiom systems of propositional calculi XIV, Proc. Japan Acad. Ser. A Math. Sci. 42 (1966), 19-22. 
  10. Iorgulescu A., Algebras of Logic as BCK-Algebras, Bucharest 2008. 
  11. Iorgulescu, A., New generalizations of BCI, BCK and Hilbert algebras - Part I, J. Mult.-Valued Logic Soft Comput. 27 (2016), 353-406. 
  12. Iorgulescu, A., New generalizations of BCI, BCK and Hilbert algebras - Part II, J. Mult.-Valued Logic Soft Comput. 27 (2016), 407-456. 
  13. Iseki, K., An algebra related with a propositional calculus, Proc. Japan Acad. Ser. A Math. Sci. 42 (1966), 26-29. 
  14. Walendziak, A., Pseudo-BCH-algebras, Discuss. Math. Gen. Algebra Appl. 35 (2015), 1-15. 
  15. Walendziak, A., On ideals of pseudo-BCH-algebras, Ann. Univ. Mariae Curie-Skłodowska Sect. A 70 (2016), 81-91. 
  16. Walendziak, A., Strong ideals and horizontal ideals in pseudo-BCH-algebras, Ann. Univ. Paedagog. Crac. Stud. Math. 15 (2016), 15-25. 
  17. Zhang, X., Ye, R., BZ-algebra and group, J. of Mathematical and Physical Sciences 29 (1995), 223-233. 
  18. Zhang, X., Wang, Y., Dudek, W. A., T-ideals in BZ-algebras and T-type BZ-algebras, Indian J. Pure Appl. Math. 34 (2003), 1559-1570. 

NotesEmbed ?

top

You must be logged in to post comments.