On ideals of pseudo-BCH-algebras

Andrzej Walendziak

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2016)

  • Volume: 70, Issue: 1
  • ISSN: 0365-1029

Abstract

top
In this paper we introduce the notion of a disjoint union of pseudo-BCH-algebras and describe ideals in such algebras. We also investigate ideals of direct products of pseudo-BCH-algebras. Moreover, we establish conditions for the set of all minimal elements of a pseudo-BCH-algebra X to be an ideal of X.

How to cite

top

Andrzej Walendziak. "On ideals of pseudo-BCH-algebras." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 70.1 (2016): null. <http://eudml.org/doc/289738>.

@article{AndrzejWalendziak2016,
abstract = {In this paper we introduce the notion of a disjoint union of pseudo-BCH-algebras and describe ideals in such algebras. We also investigate ideals of direct products of pseudo-BCH-algebras. Moreover, we establish conditions for the set of all minimal elements of a pseudo-BCH-algebra X to be an ideal of X.},
author = {Andrzej Walendziak},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {(Pseudo-)BCK/BCI/BCH-algebra; disjoint union; ideal; centre},
language = {eng},
number = {1},
pages = {null},
title = {On ideals of pseudo-BCH-algebras},
url = {http://eudml.org/doc/289738},
volume = {70},
year = {2016},
}

TY - JOUR
AU - Andrzej Walendziak
TI - On ideals of pseudo-BCH-algebras
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2016
VL - 70
IS - 1
SP - null
AB - In this paper we introduce the notion of a disjoint union of pseudo-BCH-algebras and describe ideals in such algebras. We also investigate ideals of direct products of pseudo-BCH-algebras. Moreover, we establish conditions for the set of all minimal elements of a pseudo-BCH-algebra X to be an ideal of X.
LA - eng
KW - (Pseudo-)BCK/BCI/BCH-algebra; disjoint union; ideal; centre
UR - http://eudml.org/doc/289738
ER -

References

top
  1. Dudek, W. A., Thomys, J., On decompositions of BCH-algebras, Math. Japon. 35 (1990), 1131-1138. 
  2. Dudek, W. A., Zhang, X., On atoms in BCC-algebras, Discuss. Math. Algebra Stochastic Methods 15 (1995), 81-85. 
  3. Dudek, W. A., Jun, Y. B., Pseudo-BCI-algebras, East Asian Math. J. 24 (2008), 187-190. 
  4. Dudek, W. A., Zhang, X., Wang, Y., Ideals and atoms of BZ-algebras, Math. Slovaca 59 (2009), 387-404. 
  5. Dudek, W. A., Karamdin, B., Bhatti, S. A., Branches and ideals of weak BCC-algebras, Algebra Colloq. 18 (Special) (2011), 899-914. 
  6. Dvurecenskij, A., Pulmannova, S., New Trends in Quantum Structures, Kluwer Acad. Publ., Dordrecht; Ister Science, Bratislava, 2000. 
  7. Dymek, G., Atoms and ideals of pseudo-BCI-algebras, Comment. Math. 52 (2012), 73-90. 
  8. Dymek, G., On pseudo-BCI-algebras, Ann. Univ. Mariae Curie-Skłodowska Sect. A 69 (1) (2015), 59-71. 
  9. Georgescu, G., Iorgulescu, A., Pseudo-BCK algebras: an extension of BCK algebras, in Proc. of DMTCS’01: Combinatorics, Computability and Logic, 97-114, Springer, London, 2001. 
  10. Hu, Q. P., Li, X., On BCH-algebras, Math. Seminar Notes 11 (1983), 313-320. 
  11. Imai, Y., Iseki, K., On axiom systems of propositional calculi XIV, Proc. Japan Acad. 42 (1966), 19-22. 
  12. Iseki, K., An algebra related with a propositional culculus, Proc. Japan Acad. 42 (1966), 26-29. 
  13. Iorgulescu, A., Algebras of Logic as BCK-algebras, Editura ASE, Bucharest, 2008. 
  14. Kim, K. H., Roh, E. H., The role of A + and A ( X ) in BCH-algebras, Math. Japon. 52 (2000), 317-321. 
  15. Kim, Y. H., So, K. S., On minimality in pseudo-BCI-algebras, Commun. Korean Math. Soc. 27 (2012), 7-13. 
  16. Lee, K. J, Park, C. H., Some ideals of pseudo-BCI-algebras, J. Appl. Math. Inform. 27 (2009), 217-231. 
  17. Meng, J., Xin, X. L., Characterizations of atoms in BCI-algebras, Math. Japon. 37 (1992), 359-361. 
  18. Walendziak, A., Pseudo-BCH-algebras, Discuss. Math. Gen. Algebra Appl. 35 (2015), 1-15. 
  19. Walendziak, A., Wojciechowska-Rysiawa, M., Fuzzy ideals of pseudo-BCH-algebras, Mathematica Aeterna 5 (2015), 867-881. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.