A set on which the local Łojasiewicz exponent is attained

Jacek Chądzyński; Tadeusz Krasiński

Annales Polonici Mathematici (1997)

  • Volume: 67, Issue: 3, page 297-301
  • ISSN: 0066-2216

Abstract

top
Let U be a neighbourhood of 0 ∈ ℂⁿ. We show that for a holomorphic mapping F = ( f , . . . , f ) : U m , F(0) = 0, the Łojasiewicz exponent ₀(F) is attained on the set z ∈ U: f₁(z)·...·fₘ(z) = 0.

How to cite

top

Jacek Chądzyński, and Tadeusz Krasiński. "A set on which the local Łojasiewicz exponent is attained." Annales Polonici Mathematici 67.3 (1997): 297-301. <http://eudml.org/doc/270377>.

@article{JacekChądzyński1997,
abstract = {Let U be a neighbourhood of 0 ∈ ℂⁿ. We show that for a holomorphic mapping $F = (f₁,..., fₘ): U → ℂ^m$, F(0) = 0, the Łojasiewicz exponent ₀(F) is attained on the set z ∈ U: f₁(z)·...·fₘ(z) = 0.},
author = {Jacek Chądzyński, Tadeusz Krasiński},
journal = {Annales Polonici Mathematici},
keywords = {holomorphic mapping; Łojasiewicz exponent; polynomial mapping},
language = {eng},
number = {3},
pages = {297-301},
title = {A set on which the local Łojasiewicz exponent is attained},
url = {http://eudml.org/doc/270377},
volume = {67},
year = {1997},
}

TY - JOUR
AU - Jacek Chądzyński
AU - Tadeusz Krasiński
TI - A set on which the local Łojasiewicz exponent is attained
JO - Annales Polonici Mathematici
PY - 1997
VL - 67
IS - 3
SP - 297
EP - 301
AB - Let U be a neighbourhood of 0 ∈ ℂⁿ. We show that for a holomorphic mapping $F = (f₁,..., fₘ): U → ℂ^m$, F(0) = 0, the Łojasiewicz exponent ₀(F) is attained on the set z ∈ U: f₁(z)·...·fₘ(z) = 0.
LA - eng
KW - holomorphic mapping; Łojasiewicz exponent; polynomial mapping
UR - http://eudml.org/doc/270377
ER -

References

top
  1. [CK₁] J. Chądzyński and T. Krasiński, The Łojasiewicz exponent of an analytic mapping of two complex variables at an isolated zero, in: Singularities, S. Łojasiewicz (ed.), Banach Center Publ. 20, PWN, Warszawa, 1988, 139-146. Zbl0674.32004
  2. [CK₂] J. Chądzyński and T. Krasiński, A set on which the Łojasiewicz exponent at infinity is attained, Ann. Polon. Math. 67 (1997), 191-197. Zbl0924.32004
  3. [CK₃] J. Chądzyński and T. Krasiński, On the Łojasiewicz exponent for analytic curves, in: Singularities Symposium - Łojasiewicz 70, B. Jakubczyk, W. Pawłucki and J. Stasica (eds.), Banach Center Publ., to appear. Zbl0924.32006
  4. [LT] M. Lejeune-Jalabert et B. Teissier, Clôture intégrale des idéaux et equisingularité, Centre de Mathématiques, École Polytechnique, 1974. 
  5. [P] A. Płoski, Newton polygons and the Łojasiewicz exponent of a holomorphic mapping of ℂ², Ann. Polon. Math. 51 (1990), 275-281. Zbl0764.32012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.