A set on which the Łojasiewicz exponent at infinity is attained

Jacek Chądzyński; Tadeusz Krasiński

Annales Polonici Mathematici (1997)

  • Volume: 67, Issue: 2, page 191-197
  • ISSN: 0066-2216

Abstract

top
We show that for a polynomial mapping F = ( f , . . . , f ) : n m the Łojasiewicz exponent ( F ) of F is attained on the set z n : f ( z ) · . . . · f ( z ) = 0 .

How to cite

top

Jacek Chądzyński, and Tadeusz Krasiński. "A set on which the Łojasiewicz exponent at infinity is attained." Annales Polonici Mathematici 67.2 (1997): 191-197. <http://eudml.org/doc/270658>.

@article{JacekChądzyński1997,
abstract = {We show that for a polynomial mapping $F = (f₁,..., fₘ): ℂ^n → ℂ^m$ the Łojasiewicz exponent $_∞(F)$ of F is attained on the set $\{z ∈ ℂ^n: f₁(z) ·...· fₘ(z) = 0\}$.},
author = {Jacek Chądzyński, Tadeusz Krasiński},
journal = {Annales Polonici Mathematici},
keywords = {polynomial mapping; Łojasiewicz exponent; Łojasiewicz exponent at infinity},
language = {eng},
number = {2},
pages = {191-197},
title = {A set on which the Łojasiewicz exponent at infinity is attained},
url = {http://eudml.org/doc/270658},
volume = {67},
year = {1997},
}

TY - JOUR
AU - Jacek Chądzyński
AU - Tadeusz Krasiński
TI - A set on which the Łojasiewicz exponent at infinity is attained
JO - Annales Polonici Mathematici
PY - 1997
VL - 67
IS - 2
SP - 191
EP - 197
AB - We show that for a polynomial mapping $F = (f₁,..., fₘ): ℂ^n → ℂ^m$ the Łojasiewicz exponent $_∞(F)$ of F is attained on the set ${z ∈ ℂ^n: f₁(z) ·...· fₘ(z) = 0}$.
LA - eng
KW - polynomial mapping; Łojasiewicz exponent; Łojasiewicz exponent at infinity
UR - http://eudml.org/doc/270658
ER -

References

top
  1. [BR] R. Benedetti and J. J. Risler, Real Algebraic and Semi-Algebraic Sets, Hermann, Paris, 1090. 
  2. [CK] J. Chądzyński and T. Krasiński, Exponent of growth of polynomial mappings of ℂ² into ℂ², in: Singularities, S. Łojasiewicz (ed.), Banach Center Publ. 20, PWN, Warszawa, 1988, 147-160. 
  3. [J] Z. Jelonek, Testing sets for properness of polynomial mappings, Inst. Math., Jagiellonian University, preprint 16 (1996), 37 pp. Zbl0946.14039
  4. [NZ] A. Némethi and A. Zaharia, Milnor fibration at infinity, Indag. Math. 3 (1992), 323-335. Zbl0806.57021
  5. [P₁] A. Płoski, Newton polygons and the Łojasiewicz exponent of a holomorphic mapping of ℂ², Ann. Polon. Math. 51 (1990), 275-281. Zbl0764.32012
  6. [P₂] A. Płoski, A note on the Łojasiewicz exponent at infinity, Bull. Soc. Sci. Lettres Łódź 44 (17) (1994), 11-15. Zbl0883.32022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.