Modular and median signpost systems and their underlying graphs
Henry Martyn Mulder; Ladislav Nebeský
Discussiones Mathematicae Graph Theory (2003)
- Volume: 23, Issue: 2, page 309-324
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] S.P. Avann, Metric ternary distributive semi-lattices, Proc. Amer. Math. Soc. 11 (1961) 407-414, doi: 10.1090/S0002-9939-1961-0125807-5. Zbl0099.02201
- [2] H.-J. Bandelt and H.M. Mulder, Pseudo-modular graphs, Discrete Math. 62 (1986) 245-260, doi: 10.1016/0012-365X(86)90212-8. Zbl0606.05053
- [3] W. Imrich, S. Klavžar, and H. M. Mulder, Median graphs and triangle-free graphs, SIAM J. Discrete Math. 12 (1999) 111-118, doi: 10.1137/S0895480197323494. Zbl0916.68106
- [4] S. Klavžar and H.M. Mulder, Median graphs: characterizations, location theory and related structures, J. Combin. Math. Combin. Comp. 30 (1999) 103-127. Zbl0931.05072
- [5] H.M. Mulder, The interval function of a graph (Math. Centre Tracts 132, Math. Centre, Amsterdam, 1980). Zbl0446.05039
- [6] L. Nebeský, Graphic algebras, Comment. Math. Univ. Carolinae 11 (1970) 533-544. Zbl0208.02701
- [7] L. Nebeský, Median graphs, Comment. Math. Univ. Carolinae 12 (1971) 317-325. Zbl0215.34001
- [8] L. Nebeský, Geodesics and steps in connected graphs, Czechoslovak Math. Journal 47 (122) (1997) 149-161. Zbl0898.05041
- [9] L. Nebeský, A tree as a finite nonempty set with a binary operation, Mathematica Bohemica 125 (2000) 455-458. Zbl0963.05032
- [10] L. Nebeský, A theorem for an axiomatic approach to metric properties of graphs, Czechoslovak Math. Journal 50 (125) (2000) 121-133. Zbl1033.05033
- [11] M. Sholander, Trees, lattices, order, and betweenness, Proc. Amer. Math. Soc. 3 (1952) 369-381, doi: 10.1090/S0002-9939-1952-0048405-5.