A theorem for an axiomatic approach to metric properties of graphs

Ladislav Nebeský

Czechoslovak Mathematical Journal (2000)

  • Volume: 50, Issue: 1, page 121-133
  • ISSN: 0011-4642

How to cite

top

Nebeský, Ladislav. "A theorem for an axiomatic approach to metric properties of graphs." Czechoslovak Mathematical Journal 50.1 (2000): 121-133. <http://eudml.org/doc/30549>.

@article{Nebeský2000,
author = {Nebeský, Ladislav},
journal = {Czechoslovak Mathematical Journal},
keywords = {distance in a graph; step in a graph},
language = {eng},
number = {1},
pages = {121-133},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A theorem for an axiomatic approach to metric properties of graphs},
url = {http://eudml.org/doc/30549},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Nebeský, Ladislav
TI - A theorem for an axiomatic approach to metric properties of graphs
JO - Czechoslovak Mathematical Journal
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 1
SP - 121
EP - 133
LA - eng
KW - distance in a graph; step in a graph
UR - http://eudml.org/doc/30549
ER -

References

top
  1. 10.1002/mana.19931630117, Math. Nachr. 163 (1993), 177–201. (1993) MR1235066DOI10.1002/mana.19931630117
  2. Graphs & Digraphs, Third edition. Chapman & Hall, London, 1996. (1996) MR1408678
  3. The Interval Function of a Graph, Mathematisch Centrum, Amsterdam, 1980. (1980) Zbl0446.05039MR0605838
  4. A characterization of the set of all shortest paths in a connected graph, Math. Bohem. 119 (1994), 15–20. (1994) MR1303548
  5. A characterization of the interval function of a connected graph, Czechoslovak Math. J. 44 (119) (1994), 173–178. (1994) MR1257943
  6. 10.1023/A:1022404624515, Czechoslovak Math. J. 47 (122) (1997), 149–161. (1997) MR1435613DOI10.1023/A:1022404624515
  7. 10.1023/A:1022472700080, Czechoslovak Math. J. 50(125) (2000), 3–14. (2000) MR1745453DOI10.1023/A:1022472700080
  8. 10.1023/A:1022404126392, Czechoslovak Math. J. 48(123) (1998), 809–813. (1998) MR1658202DOI10.1023/A:1022404126392

NotesEmbed ?

top

You must be logged in to post comments.