On the method of lines for a non-linear heat equation with functional dependence
Annales Polonici Mathematici (1998)
- Volume: 69, Issue: 1, page 61-74
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topH. Leszczyński. "On the method of lines for a non-linear heat equation with functional dependence." Annales Polonici Mathematici 69.1 (1998): 61-74. <http://eudml.org/doc/270440>.
@article{H1998,
abstract = {We consider a heat equation with a non-linear right-hand side which depends on certain Volterra-type functionals. We study the problem of existence and convergence for the method of lines by means of semi-discrete inverse formulae.},
author = {H. Leszczyński},
journal = {Annales Polonici Mathematici},
keywords = {method of lines; stability; consistency; nonlinear heat equation; functional dependence; convergence},
language = {eng},
number = {1},
pages = {61-74},
title = {On the method of lines for a non-linear heat equation with functional dependence},
url = {http://eudml.org/doc/270440},
volume = {69},
year = {1998},
}
TY - JOUR
AU - H. Leszczyński
TI - On the method of lines for a non-linear heat equation with functional dependence
JO - Annales Polonici Mathematici
PY - 1998
VL - 69
IS - 1
SP - 61
EP - 74
AB - We consider a heat equation with a non-linear right-hand side which depends on certain Volterra-type functionals. We study the problem of existence and convergence for the method of lines by means of semi-discrete inverse formulae.
LA - eng
KW - method of lines; stability; consistency; nonlinear heat equation; functional dependence; convergence
UR - http://eudml.org/doc/270440
ER -
References
top- [1] P. Besala, Finite difference approximation to the Cauchy problem for non-linear parabolic differential equations, Ann. Polon. Math. 46 (1985), 19-26. Zbl0601.65073
- [2] S. Brzychczy, Chaplygin's method for a system of nonlinear parabolic differential-functional equations, Differentsial'nye Uravneniya 22 (1986), 705-708 (in Russian). Zbl0613.35041
- [3] L. Byszewski, Monotone iterative method for a system of nonlocal initial-boundary parabolic problems, J. Math. Anal. Appl. 177 (1993), 445-458. Zbl0791.35058
- [4] Z. Kamont, On the Chaplygin method for partial differential-functional equations of the first order, Ann. Polon. Math. 38 (1980), 27-46. Zbl0448.34070
- [5] Z. Kamont and H. Leszczyński, Stability of difference equations generated by parabolic differential-functional problems, Rend. Mat. 16 (1996), 265-287. Zbl0859.65094
- [6] Z. Kamont and H. Leszczyński, Numerical solutions to the Darboux problem with the functional dependence, Georgian Math. J. (1997). Zbl0955.65076
- [7] Z. Kamont and S. Zacharek, The line method for parabolic differential-functional equations with initial boundary conditions of the Dirichlet type, Atti Sem. Mat. Fis. Univ. Modena 35 (1987), 249-262. Zbl0642.35076
- [8] M. Krzyżański, Partial Differential Equations of Second Order, PWN, Warszawa, 1971.
- [9] G. S. Ladde, V. Lakshmikantham and A. S. Vatsala, Monotone Iterative Techniques for Nonlinear Differential Equations, Pitman Adv. Publ. Program, Pitman, Boston, 1985. Zbl0658.35003
- [10] O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, Moscow, 1967 (in Russian); English transl.: Transl. Math. Monographs 23, Amer. Math. Soc., Providence, R.I., 1968.
- [11] H. Leszczyński, Convergence of one-step difference methods for nonlinear parabolic differential-functional systems with initial boundary conditions of Dirichlet type, Comment. Math. Prace Mat. 30 (1991), 357-375. Zbl0751.65059
- [12] H. Leszczyński, A new existence result for a non-linear heat equation with functional dependence, Comment. Math. Prace Mat. 37 (1997), 155-181. Zbl0896.35067
- [13] H. Leszczyński, General finite difference approximation to the Cauchy problem for non-linear parabolic differential-functional equations, Ann. Polon. Math. 53 (1991), 15-28. Zbl0731.65079
- [14] H. Leszczyński, Convergence results for unbounded solutions of first order non-linear differential-functional equations, Ann. Polon. Math. 64 (1996), 1-16. Zbl0863.35110
- [15] H. Leszczyński, Discrete approximations to the Cauchy problem for hyperbolic differential-functional systems in the Schauder canonic form, Zh. Vychisl. Mat. Mat. Fiz. 34 (1994), 185-200 (in Russian); English transl.: Comput. Math. Math. Phys. 34 (1994), 151-164. Zbl0820.65054
- [16] M. Malec et A. Schiaffino, Méthode aux différences finies pour une équation non linéaire différentielle fonctionnelle du type parabolique avec une condition initiale de Cauchy, Boll. Un. Mat. Ital. B (7) 1 (1987), 99-109. Zbl0617.65083
- [17] L. F. Shampine, ODE solvers and the method of lines, Numer. Methods Partial Differential Equations 10 (1994), 739-755. Zbl0826.65082
- [18] A. Voigt, Line method approximation to the Cauchy problem for nonlinear differential equations, Numer. Math. 23 (1974), 23-36. Zbl0303.35046
- [19] A. Voigt, The method of lines for nonlinear parabolic differential equations with mixed derivatives, Numer. Math. 32 (1979), 197-207. Zbl0387.65060
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.