Existence of a nontrival solution for Dirichlet problem involving p(x)-Laplacian
Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2014)
- Volume: 34, Issue: 1, page 15-39
- ISSN: 1509-9407
Access Full Article
topAbstract
topHow to cite
topSylwia Barnaś. "Existence of a nontrival solution for Dirichlet problem involving p(x)-Laplacian." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 34.1 (2014): 15-39. <http://eudml.org/doc/270445>.
@article{SylwiaBarnaś2014,
abstract = {In this paper we study the nonlinear Dirichlet problem involving p(x)-Laplacian (hemivariational inequality) with nonsmooth potential. By using nonsmooth critical point theory for locally Lipschitz functionals due to Chang [6] and the properties of variational Sobolev spaces, we establish conditions which ensure the existence of solution for our problem.},
author = {Sylwia Barnaś},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {p(x)-Laplacian; hemivariational inequality; Cerami condition; mountain pass theorem; variable exponent Sobolev space; -Laplacian; variable exponent; Sobolev space},
language = {eng},
number = {1},
pages = {15-39},
title = {Existence of a nontrival solution for Dirichlet problem involving p(x)-Laplacian},
url = {http://eudml.org/doc/270445},
volume = {34},
year = {2014},
}
TY - JOUR
AU - Sylwia Barnaś
TI - Existence of a nontrival solution for Dirichlet problem involving p(x)-Laplacian
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2014
VL - 34
IS - 1
SP - 15
EP - 39
AB - In this paper we study the nonlinear Dirichlet problem involving p(x)-Laplacian (hemivariational inequality) with nonsmooth potential. By using nonsmooth critical point theory for locally Lipschitz functionals due to Chang [6] and the properties of variational Sobolev spaces, we establish conditions which ensure the existence of solution for our problem.
LA - eng
KW - p(x)-Laplacian; hemivariational inequality; Cerami condition; mountain pass theorem; variable exponent Sobolev space; -Laplacian; variable exponent; Sobolev space
UR - http://eudml.org/doc/270445
ER -
References
top- [1] E. Acerbi and G. Mingione, Regularity results for stationary electrorheological fluids, Arch. Ration. Mech. Anal. 164 (2002) 213-259. doi: 10.1007/s00205-002-0208-7 Zbl1038.76058
- [2] A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973) 349-381. doi: 10.1016/0022-1236(73)90051-7 Zbl0273.49063
- [3] S. Barnaś, Existence result for hemivariational inequality involving p(x)-Laplacian, Opuscula Math. 32 (2012) 439-454. doi: 10.7494/OpMath.2012.32.3.439 Zbl1250.35010
- [4] S. Barnaś, Existence result for differential inclusion with p(x)-Laplacian, Schedae Informaticae 21 (2012) 41-55. Zbl1250.35010
- [5] K.C. Chang, Critical Point Theory and Applications (Shanghai Scientific and Technology Press, Shanghai, 1996).
- [6] K.C. Chang, Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981) 102-129. doi: 10.1016/0022-247X(81)90095-0
- [7] Y. Chen, S. Levine and M. Rao, Variable exponent linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (4) (2006) 1383-1406. doi: 10.1137/050624522 Zbl1102.49010
- [8] F.H. Clarke, Optimization and Nonsmooth Analysis (Wiley, New York, 1993).
- [9] G. Dai, Infinitely many solutions for a hemivariational inequality involving the p(x)-Laplacian, Nonlinear Anal. 71 (2009) 186-195. doi: 10.1016/j.na.2008.10.039 Zbl1173.35511
- [10] L. Diening, P. Hästö, P. Harjulehto and M. Ružička, Lebesgue and Sobolev Spaces with Variable Exponents (Springer-Verlag, Berlin, 2011). doi: 10.1007/978-3-642-18363-8 Zbl1222.46002
- [11] X. Fan, Solutions for p(x)-Laplacian Dirichlet problems with singular coefficients, J. Math. Anal. Appl. 312 (2005) 464-477. doi: 10.1016/j.jmaa.2005.03.057 Zbl1154.35336
- [12] X. Fan, Eigenvalues of the p(x)-Laplacian Neumann problems, Nonlinear Anal. 67 (2007) 2982-2992. doi: 10.1016/j.na.2006.09.052 Zbl1126.35037
- [13] X. Fan and Q. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003) 1843-1853. doi: 10.1016/S0362-546X(02)00150-5 Zbl1146.35353
- [14] X. Fan, Q. Zhang and D. Zhao, Eigenvalues of p(x)-Laplacian Dirichlet problem, J. Math. Anal. Appl. 302 (2005) 306-317. doi: 10.1016/j.jmaa.2003.11.020 Zbl1072.35138
- [15] X. Fan and D. Zhao, On the generalized Orlicz - Sobolev space , J. Gansu Educ. College 12 (1) (1998) 1-6.
- [16] X. Fan and D. Zhao, On the spaces and , J. Math. Anal. Appl. 263 (2001) 424-446. doi: 10.1006/jmaa.2000.7617
- [17] L. Gasiński and N.S. Papageorgiou, Nonlinear hemivariational inequalities at resonance, Bull. Austr. Math. Soc. 60 (3) (1999) 353-364. doi: 10.1017/S0004972700036546 Zbl0941.35035
- [18] L. Gasiński and N.S. Papageorgiou, Solutions and multiple solutions for quasilinear hemivariational inequalities at resonance, Proc. Roy. Soc. Edinb. 131A (5) (2001) 1091-1111. doi: 10.1017/S0308210500001281 Zbl0995.35025
- [19] L. Gasiński and N.S. Papageorgiou, An existance theorem for nonlinear hemivariational inequalities at resonance, Bull. Austr. Math. Soc. 63 (1) (2001) 1-14. doi: 10.1017/S0004972700019067 Zbl0977.35054
- [20] L. Gasiński and N.S. Papageorgiou, Nonlinear Analysis: Volume 9 (Series in Mathematical Analysis and Applications, 2006).
- [21] B. Ge and X. Xue, Multiple solutions for inequality Dirichlet problems by the p(x)-Laplacian, Nonlinear Anal. 11 (2010) 3198-3210. doi: 10.1016/j.nonrwa.2009.11.014 Zbl1196.35236
- [22] B. Ge, X. Xue and Q. Zhou, The existence of radial solutions for differential inclusion problems in involving the p(x)-Laplacian, Nonlinear Anal. 73 (2010) 622-633. doi: 10.1016/j.na.2010.03.041
- [23] Ch. Ji, Remarks on the existence of three solutions for the p(x)-Laplacian equations, Nonlinear Anal. 74 (2011) 2908-2915. doi: 10.1016/j.na.2010.12.013 Zbl1210.35132
- [24] N. Kourogenic and N.S. Papageorgiou, Nonsmooth critical point theory and nonlinear elliptic equations at resonance, J. Aust. Math. Soc. 69 (2000) 245-271. doi: 10.1017/S1446788700002202 Zbl0964.35055
- [25] M. Mihǎilescu and V. Rǎdulescu, A multiplicity result for a nonlinear degenerate problem araising in the thory of electrorheological fluids, Proc. R. Soc. Lond. Ser. A 462 (2006) 2625-2641. Zbl1149.76692
- [26] M. Ružička, Electrorheological Fluids: Modelling and Mathematical Theory (Springer-Verlag, Berlin, 2000).
- [27] Ch. Qian and Z. Shen, Existence and multiplicity of solutions for p(x)-Laplacian equation with nonsmooth potential, Nonlinear Anal. 11 (2010) 106-116. doi: 10.1016/j.nonrwa.2008.10.019
- [28] Ch. Qian, Z. Shen and M. Yang, Existence of solutions for p(x)-Laplacian nonhomogeneous Neumann problems with indefinite weight, Nonlinear Anal. 11 (2010) 446-458. doi: 10.1016/j.nonrwa.2008.11.019
- [29] Ch. Qian, Z. Shen and J. Zhu, Multiplicity results for a differential inclusion problem with non-standard growth, J. Math. Anal. Appl. 386 (2012) 364-377. doi: 10.1016/j.jmaa.2011.08.015 Zbl1234.35082
- [30] V. Zikov, Averaging of functionals in the calculus of variations and elasticity, Math. USSR Izv. 29 (1987) 33-66. doi: 10.1070/IM1987v029n01ABEH000958
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.