The Chvátal-Erdős condition and 2-factors with a specified number of components
Guantao Chen; Ronald J. Gould; Ken-ichi Kawarabayashi; Katsuhiro Ota; Akira Saito; Ingo Schiermeyer
Discussiones Mathematicae Graph Theory (2007)
- Volume: 27, Issue: 3, page 401-407
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A. Bondy, A remark on two sufficient conditions for Hamilton cycles, Discrete Math. 22 (1978) 191-194, doi: 10.1016/0012-365X(78)90124-3. Zbl0381.05040
- [2] S. Brandt, G. Chen, R. Faudree, R. Gould and L. Lesniak, Degree conditions for 2-factors, J. Graph Theory 24 (1997) 165-173, doi: 10.1002/(SICI)1097-0118(199702)24:2<165::AID-JGT4>3.0.CO;2-O Zbl0879.05060
- [3] G. Chartrand and L. Lesniak, Graphs & Digraphs (3rd ed.) (Wadsworth & Brooks/Cole, Monterey, CA, 1996).
- [4] V. Chvátal and P. Erdös, A note on hamiltonian circuits, Discrete Math. 2 (1972) 111-113, doi: 10.1016/0012-365X(72)90079-9. Zbl0233.05123
- [5] Y. Egawa, personal communication.
- [6] H. Enomoto, On the existence of disjoint cycles in a graph, Combinatorica 18 (1998) 487-492, doi: 10.1007/s004930050034. Zbl0924.05041
- [7] A. Kaneko and K. Yoshimoto, A 2-factor with two components of a graph satisfying the Chvátal-Erdös condition, J. Graph Theory 43 (2003) 269-279, doi: 10.1002/jgt.10119. Zbl1033.05085
- [8] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55, doi: 10.2307/2308928.