Abstract inclusions in Banach spaces with boundary conditions of periodic type
Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2014)
- Volume: 34, Issue: 2, page 229-253
- ISSN: 1509-9407
Access Full Article
topAbstract
topHow to cite
topLahcene Guedda, and Ahmed Hallouz. "Abstract inclusions in Banach spaces with boundary conditions of periodic type." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 34.2 (2014): 229-253. <http://eudml.org/doc/270538>.
@article{LahceneGuedda2014,
abstract = {We study in the space of continuous functions defined on [0,T] with values in a real Banach space E the periodic boundary value problem for abstract inclusions of the form
⎧ $x ∈ S(x(0), sel_\{F\}(x))$
⎨
⎩ x (T) = x(0),
where, $F:[0,T] × → 2^E $ is a multivalued map with convex compact values, ⊂ E, $sel_\{F\}$ is the superposition operator generated by F, and S: × L¹([0,T];E) → C([0,T]; ) an abstract operator. As an application, some results are given to the periodic boundary value problem for nonlinear differential inclusions governed by m-accretive operators generating not necessarily a compact semigroups.},
author = {Lahcene Guedda, Ahmed Hallouz},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {measure of noncompactness; condensing operator; nonlinear abstract inclusion; accretive operator; integral solution; nonlinear semigroup},
language = {eng},
number = {2},
pages = {229-253},
title = {Abstract inclusions in Banach spaces with boundary conditions of periodic type},
url = {http://eudml.org/doc/270538},
volume = {34},
year = {2014},
}
TY - JOUR
AU - Lahcene Guedda
AU - Ahmed Hallouz
TI - Abstract inclusions in Banach spaces with boundary conditions of periodic type
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2014
VL - 34
IS - 2
SP - 229
EP - 253
AB - We study in the space of continuous functions defined on [0,T] with values in a real Banach space E the periodic boundary value problem for abstract inclusions of the form
⎧ $x ∈ S(x(0), sel_{F}(x))$
⎨
⎩ x (T) = x(0),
where, $F:[0,T] × → 2^E $ is a multivalued map with convex compact values, ⊂ E, $sel_{F}$ is the superposition operator generated by F, and S: × L¹([0,T];E) → C([0,T]; ) an abstract operator. As an application, some results are given to the periodic boundary value problem for nonlinear differential inclusions governed by m-accretive operators generating not necessarily a compact semigroups.
LA - eng
KW - measure of noncompactness; condensing operator; nonlinear abstract inclusion; accretive operator; integral solution; nonlinear semigroup
UR - http://eudml.org/doc/270538
ER -
References
top- [1] S. Aizicovici, N.S. Papageorgiou and Staicu, Periodic solutions of nonlinear evolution inclusions in Banach spaces, J. Nonlinear Convex Anal. 7 (2) (2006) 163-177. Zbl1110.34037
- [2] R.R. Akhmerov, M.I. Kamenskii, A.S. Potapov, B.N. Rodkina and B.N. Sadovskiĭ, Measures of Noncompactness and Condensing Operators, Number 55 in Oper. Theory Adv. Appl. (Birkhäuser, Basel, Boston, Berlin, 1992). doi: 10.1007/978-3-0348-5727-7
- [3] R. Bader, B.D. Gel'man, M.I. Kamenskii and V.V. Obukhovskii, On the topological dimension of the solutions sets for some classes of operator and differential inclusions, Discuss. Math. DICO 22 (1) (2002) 17-32. doi: 10.7151/dmdico.1030 Zbl1041.47031
- [4] R. Bader, M.I. Kamenskii and V.V. Obukhovskii, On some classes of operator inclusions with lower semicontinuous nonlinearities, Topol. Methods Nonlinear Anal. 17 (1) (2001) 143-156.
- [5] J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces (Marcel Dekker, 1980) Zbl0441.47056
- [6] V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Editura Academiei Republicii Socialiste România (Bucharest, 1976). Translated from the Romanian. doi: 10.1007/978-94-010-1537-0 Zbl0328.47035
- [7] V. Barbu, Analysis and control of nonlinear infinite-dimensional systems (Academic Press Inc., Boston, 1993) Zbl0776.49005
- [8] Yu. G. Borisovich, B.D. Gelman, A.D. Myshkis, and V.V. Obukhovskii, Multi-valued analysis and operator inclusions, J. Soviet Math 39 (1987) 2772-2811. doi: 10.1007/BF01127054 Zbl0725.54015
- [9] Ph. Bénilan, Solutions intégrales d'équations d'évolution dans un espace de Banach, C.R. Acad. Sci. Paris (A-B) 274 (1972) A47-A50. Zbl0246.47068
- [10] P. Benilan and H. Brezis, Solutions faibles d'équations d'évolution dans les espaces de Hilbert, Ann. Inst. Fourier (Grenoble) 22 (2) (1972) 311-329. doi: 10.5802/aif.421 Zbl0226.47034
- [11] D. Bothe, Multivalued perturbations of m-accretive differential inclusions, Israel J. Math 108 (1998) 109-138. doi: 10.1007/BF02783044 Zbl0922.47048
- [12] D. Bothe, Nonlinear Evolutions in Banach Spaces - Existence and Qualitative Theory with Applications to Reaction-Diffusion Systems, Habilitation thesis (Univ. of Paderborn, 1999).
- [13] J.F. Couchouron and M. Kamenskii, A unified topological point of view for integro-differential inclusions and optimal control. (J.Andres, L. Górniewicz and P. Nistri eds.), Lecture Notes in Nonlinear Anal. 2 (1998) 123-137. Zbl1105.45005
- [14] J.-F. Couchouron and M. Kamenskii, An abstract topological point of view and a general averaging principle in the theory of differential inclusions, Nonlinear Anal. (A) 42 (6) (2000) 1101-1129. doi: 10.1016/S0362-546X(99)00181-9 Zbl0972.34049
- [15] J. Diestel, W.M. Ruess, and W. Schachermayer, On weak compactness in L¹(μ,X), Proc. Amer. Math. Soc. 118 (2) (1993) 447-453.
- [16] J. Diestel and J.J. Uhl, Jr., Vector measures, American Mathematical Society (Providence, R.I., 1977). doi: 10.1090/surv/015. Zbl0369.46039
- [17] L. Górniewicz, A. Granas and W. Kryszewski, Sur la méthode de l'homotopie dans la théoorie des point fixes pour les applications multivoques, Partie 2: L 'indiee dans les ANRs compaetes, Comptes Rendus de l'Aeadémie des Sciences, Paris 308 (1989) 449-452.
- [18] L. Górniewicz, Topological fixed point theory of multivalued mappings (Kluwer Academic Publishers, 1999). doi: 10.1007/978-94-015-9195-9 Zbl0937.55001
- [19] S. Gutman, Evolutions governed by m-accretive plus compact operators, Nonlinear Anal. 7 (7) (1983) 707-715. doi: 10.1016/0362-546X(83)90027-5 Zbl0518.34055
- [20] T. Kato, Nonlinear evolution equations, Proc. Sympos. Appl. Math 17 (1965) 50-67. doi: 10.1090/psapm/017/0184099
- [21] N. Halidias and N.S. Papageorgiou, Nonlinear boundary value problems with maximal monotone terms, Aequationes Math 59 (2000) 93-107. doi: 10.1007/PL00000131 Zbl0947.34009
- [22] M.I. Kamenskii, V.V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, Number 7 in de Gruyter Series in Nonlinear Analysis and Applications, de Gruyter (Berlin, 2001). Zbl0988.34001
- [23] N.S. Papageorgiou, On multivalued evolution equations and differential inclusions in Banach spaces, Comment. Math. Univ. St. Paul 36 (1) (1987) 21-39. Zbl0641.47052
- [24] A. Pazy, Initial value problems for nonlinear differential equations in Banach spaces, in: Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. IV (Paris, 1981/1982), volume 84 of Res. Notes in Math. (Pitman, Boston, MA, 1983), 154-172.
- [25] A. Pazy, Semigroups of linear operators and applications to partial differential equations (Springer-Verlag, New York, 1983). doi: 10.1007/978-1-4612-5561-1 Zbl0516.47023
- [26] Jan Prüss, On semilinear evolution equations in Banach spaces, J. Reine Angew. Math 303/304 (1978) 144-158 Zbl0398.34057
- [27] A. Tolstonogov, Differential inclusions in a Banach space (Kluwer Academic Publishers, 2000). doi: 10.1007/978-94-015-9490-5 Zbl1021.34002
- [28] I.I. Vrabie, Compactness methods for nonlinear evolutions (Longman, Harlow, 1987)
- [29] I.I. Vrabie, Periodic solutions for nonlinear evolution equations in a Banach space, Proc. Amer. Math. Soc. 109 (3) (1990) 653-661. doi: 10.1090/S0002-9939-1990-1015686-4 Zbl0701.34074
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.