Dürer polyhedra: the dark side of melancholia

Patrick W. Fowler; Peter E. John

Discussiones Mathematicae Graph Theory (2002)

  • Volume: 22, Issue: 1, page 101-109
  • ISSN: 2083-5892

Abstract

top
Dürer's engraving Melencolia I famously includes a perspective view of a solid polyhedral block of which the visible portion is an 8-circuit bounding a pentagon-triple+triangle patch. The polyhedron is usually taken to be a cube truncated on antipodal corners, but an infinity of others are compatible with the visible patch. Construction of all cubic polyhedra compatible with the visible portion (i.e., Dürer Polyhedra) is discussed, explicit graphs and symmetries are listed for small cases ( ≤ 18 vertices) and total counts are given for 10 ≤ vertices ≤ 26.

How to cite

top

Patrick W. Fowler, and Peter E. John. "Dürer polyhedra: the dark side of melancholia." Discussiones Mathematicae Graph Theory 22.1 (2002): 101-109. <http://eudml.org/doc/270560>.

@article{PatrickW2002,
abstract = {Dürer's engraving Melencolia I famously includes a perspective view of a solid polyhedral block of which the visible portion is an 8-circuit bounding a pentagon-triple+triangle patch. The polyhedron is usually taken to be a cube truncated on antipodal corners, but an infinity of others are compatible with the visible patch. Construction of all cubic polyhedra compatible with the visible portion (i.e., Dürer Polyhedra) is discussed, explicit graphs and symmetries are listed for small cases ( ≤ 18 vertices) and total counts are given for 10 ≤ vertices ≤ 26.},
author = {Patrick W. Fowler, Peter E. John},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {graph theory; geometry; chemistry},
language = {eng},
number = {1},
pages = {101-109},
title = {Dürer polyhedra: the dark side of melancholia},
url = {http://eudml.org/doc/270560},
volume = {22},
year = {2002},
}

TY - JOUR
AU - Patrick W. Fowler
AU - Peter E. John
TI - Dürer polyhedra: the dark side of melancholia
JO - Discussiones Mathematicae Graph Theory
PY - 2002
VL - 22
IS - 1
SP - 101
EP - 109
AB - Dürer's engraving Melencolia I famously includes a perspective view of a solid polyhedral block of which the visible portion is an 8-circuit bounding a pentagon-triple+triangle patch. The polyhedron is usually taken to be a cube truncated on antipodal corners, but an infinity of others are compatible with the visible patch. Construction of all cubic polyhedra compatible with the visible portion (i.e., Dürer Polyhedra) is discussed, explicit graphs and symmetries are listed for small cases ( ≤ 18 vertices) and total counts are given for 10 ≤ vertices ≤ 26.
LA - eng
KW - graph theory; geometry; chemistry
UR - http://eudml.org/doc/270560
ER -

References

top
  1. [1] E.g. 1471 Albrecht Dürer 1971. Ausstellung des Germanischen Nationalmuseums Nürnberg 21. Mai bis 1. August 1971 (Prestel-Verlag, München, 1971). Item 270: Die Melancholie. 
  2. [2] E. Panofsky, The Life and Art of Albrecht Dürer (Princeton University Press, Princeton NJ, 1955) 4th Edition, 156-171. 
  3. [3] H. Böhme, Albrecht Dürer Melencolia I. Im Labyrinth der Deutung (Fischer, Kunststuck, 1991). ISBN 3 59623958-3. 
  4. [4] E. Panofsky and F. Saxl, Dürers Melencolia I. Eine quellen- und typengeschichtliche Untersuchung (Studien der Bibliotek Warburg, Band 2), Teubner, Leipzig, 1923. 
  5. [5] The work by Dürer cited in Ref. [3] as containing such a drawing is: Unterweysung der Messung mit dem Zirkel un Richtscheyt in Linien Ebnen unnd Gantzen Corporen (Instruction in the Measurement with Compasses and Straight-Edge of Lines, Planes and Solid Bodies), Nuremberg, 1525, which is available as The Painter's Manual, A. Dürer, trans. W.S. Strauss, Abaris Books, New York, 1978, ISBN 091 387 0528. 
  6. [6] See Ref. [4], Tafel IV, Abb. 7. 
  7. [7] P.J. Federico, The Melancholy Octahedron, Mathematics Magazine, (1972) 20-36. Zbl0226.52005
  8. [8] M. Deza and V. Grishukhin, l₁-embeddable Polyhedra, in: Algebras and Combinatorics. An International Congress, ICAC '97, Hong Kong. ed., Kar-Ping Shum (Springer-Verlag, Singapore, 1999) 189-210. 
  9. [9] C.H. MacGillavry, The Polyhedron in A. Dürer's Melancolia I: An Over 450 Years Old Puzzle Solved?, Netherlands Akad. Wetensch. Proc. (B) 84 (3) (1981) 287-294. 
  10. [10] T. Lynch, The Geometric Body in A. Dürer's Engraving Melancolia I, Journal of the Warburg and Courtauld Institute 45 (1982) 226-232, doi: 10.2307/750979. 
  11. [11] J. Sharp, Dürer's Melancholy Octahedron, Mathematics in School, 18-20, (Sept. 1984). 
  12. [12] B. Grünbaum, Convex Polytopes (Wiley, London and New York, 1967). 
  13. [13] E. Steinitz, Polyeder und Raumteilungen, Enzykl. Math. Wiss., 3 (Geometrie), Part 3 AB 12, (1922) 1-139. 
  14. [14] E. Steinitz and H. Rademacher, Vorlesungen über die Theorie der Polyeder (Berlin, 1934). 
  15. [15] R.C. Read and R.J. Wilson, An Atlas of Graphs (Oxford University Press, Oxford, 1999). Zbl0908.05001
  16. [16] The nauty program written by B.D. McKay, including the graph generators makeg and makebg is available from http://www.anu.edu.au/people/bdm/index.html 
  17. [17] D.E. Manolopoulos and P.W. Fowler, Molecular graphs, point groups and fullerenes, J. Chem. Phys. 96 (1992) 7603-7614, doi: 10.1063/1.462413. 
  18. [18] A.J. Stone and D.J. Wales, Theoretical studies of icosahedral C 60 and some related species, Chem. Phys. Lett. 128 (1986) 501-503, doi: 10.1016/0009-2614(86)80661-3. 
  19. [19] G. Brinkmann and B. McKay, Version 1.0 of the programme plantri.c and its documentation are obtainable at http://cs.anu.edu.au/people/bdm. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.