The decomposability of additive hereditary properties of graphs

Izak Broere; Michael J. Dorfling

Discussiones Mathematicae Graph Theory (2000)

  • Volume: 20, Issue: 2, page 281-291
  • ISSN: 2083-5892

Abstract

top
An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphisms. If ₁,...,ₙ are properties of graphs, then a (₁,...,ₙ)-decomposition of a graph G is a partition E₁,...,Eₙ of E(G) such that G [ E i ] , the subgraph of G induced by E i , is in i , for i = 1,...,n. We define ₁ ⊕...⊕ ₙ as the property G ∈ : G has a (₁,...,ₙ)-decomposition. A property is said to be decomposable if there exist non-trivial hereditary properties ₁ and ₂ such that = ₁⊕ ₂. We study the decomposability of the well-known properties of graphs ₖ, ₖ, ₖ, ₖ, ₖ, ₖ and p .

How to cite

top

Izak Broere, and Michael J. Dorfling. "The decomposability of additive hereditary properties of graphs." Discussiones Mathematicae Graph Theory 20.2 (2000): 281-291. <http://eudml.org/doc/270686>.

@article{IzakBroere2000,
abstract = {An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphisms. If ₁,...,ₙ are properties of graphs, then a (₁,...,ₙ)-decomposition of a graph G is a partition E₁,...,Eₙ of E(G) such that $G[E_i]$, the subgraph of G induced by $E_i$, is in $_i$, for i = 1,...,n. We define ₁ ⊕...⊕ ₙ as the property G ∈ : G has a (₁,...,ₙ)-decomposition. A property is said to be decomposable if there exist non-trivial hereditary properties ₁ and ₂ such that = ₁⊕ ₂. We study the decomposability of the well-known properties of graphs ₖ, ₖ, ₖ, ₖ, ₖ, ₖ and $ ^\{p\}$.},
author = {Izak Broere, Michael J. Dorfling},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {property of graphs; additive; hereditary; decomposable property of graphs; additive hereditary property; decomposability},
language = {eng},
number = {2},
pages = {281-291},
title = {The decomposability of additive hereditary properties of graphs},
url = {http://eudml.org/doc/270686},
volume = {20},
year = {2000},
}

TY - JOUR
AU - Izak Broere
AU - Michael J. Dorfling
TI - The decomposability of additive hereditary properties of graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2000
VL - 20
IS - 2
SP - 281
EP - 291
AB - An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphisms. If ₁,...,ₙ are properties of graphs, then a (₁,...,ₙ)-decomposition of a graph G is a partition E₁,...,Eₙ of E(G) such that $G[E_i]$, the subgraph of G induced by $E_i$, is in $_i$, for i = 1,...,n. We define ₁ ⊕...⊕ ₙ as the property G ∈ : G has a (₁,...,ₙ)-decomposition. A property is said to be decomposable if there exist non-trivial hereditary properties ₁ and ₂ such that = ₁⊕ ₂. We study the decomposability of the well-known properties of graphs ₖ, ₖ, ₖ, ₖ, ₖ, ₖ and $ ^{p}$.
LA - eng
KW - property of graphs; additive; hereditary; decomposable property of graphs; additive hereditary property; decomposability
UR - http://eudml.org/doc/270686
ER -

References

top
  1. [1] M. Borowiecki and M. Hałuszczak, Decompositions of some classes of graphs, Report No. IM-3-99, Institute of Mathematics, Technical University of Zielona Góra, 1999. Zbl0905.05061
  2. [2] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037. Zbl0902.05026
  3. [3] S.A. Burr, M.S. Jacobson, P. Mihók and G. Semanišin, Generalized Ramsey theory and decomposable properties of graphs, Discuss. Math. Graph Theory 19 (1999) 199-217, doi: 10.7151/dmgt.1095. Zbl0958.05094
  4. [4] M. Hałuszczak and P. Vateha, On the completeness of decomposable properties of graphs, Discuss. Math. Graph Theory 19 (1999) 229-236, doi: 10.7151/dmgt.1097. 
  5. [5] P. Mihók, G. Semanišin and R. Vasky, Additive and hereditary properties of graphs are uniquely factorizable into irreducible factors, J. Graph Theory 33 (2000) 44-53, doi: 10.1002/(SICI)1097-0118(200001)33:1<44::AID-JGT5>3.0.CO;2-O Zbl0942.05056
  6. [6] J. Nesetril and V. Rödl, Simple proof of the existence of restricted Ramsey graphs by means of a partite construction, Combinatorica 1 (1981) 199-202, doi: 10.1007/BF02579274. Zbl0491.05044

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.