Generalized edge-chromatic numbers and additive hereditary properties of graphs
Michael J. Dorfling; Samantha Dorfling
Discussiones Mathematicae Graph Theory (2002)
- Volume: 22, Issue: 2, page 349-359
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topMichael J. Dorfling, and Samantha Dorfling. "Generalized edge-chromatic numbers and additive hereditary properties of graphs." Discussiones Mathematicae Graph Theory 22.2 (2002): 349-359. <http://eudml.org/doc/270282>.
@article{MichaelJ2002,
abstract = {An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphisms. Let and be hereditary properties of graphs. The generalized edge-chromatic number $ρ^\{\prime \}_\{\}()$ is defined as the least integer n such that ⊆ n. We investigate the generalized edge-chromatic numbers of the properties → H, ₖ, ₖ, *ₖ, ₖ and ₖ.},
author = {Michael J. Dorfling, Samantha Dorfling},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {property of graphs; additive; hereditary; generalized edge-chromatic number},
language = {eng},
number = {2},
pages = {349-359},
title = {Generalized edge-chromatic numbers and additive hereditary properties of graphs},
url = {http://eudml.org/doc/270282},
volume = {22},
year = {2002},
}
TY - JOUR
AU - Michael J. Dorfling
AU - Samantha Dorfling
TI - Generalized edge-chromatic numbers and additive hereditary properties of graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2002
VL - 22
IS - 2
SP - 349
EP - 359
AB - An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphisms. Let and be hereditary properties of graphs. The generalized edge-chromatic number $ρ^{\prime }_{}()$ is defined as the least integer n such that ⊆ n. We investigate the generalized edge-chromatic numbers of the properties → H, ₖ, ₖ, *ₖ, ₖ and ₖ.
LA - eng
KW - property of graphs; additive; hereditary; generalized edge-chromatic number
UR - http://eudml.org/doc/270282
ER -
References
top- [1] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037. Zbl0902.05026
- [2] M. Borowiecki and M. Hałuszczak, Decompositions of some classes of graphs, Report No. IM-3-99 (Institute of Mathematics, Technical University of Zielona Góra, 1999). Zbl0958.05112
- [3] I. Broere and M. J. Dorfling, The decomposability of additive hereditary properties of graphs, Discuss. Math. Graph Theory 20 (2000) 281-291, doi: 10.7151/dmgt.1127. Zbl0982.05082
- [4] I. Broere, M.J. Dorfling, J.E Dunbar and M. Frick, A path(ological) partition problem, Discuss. Math. Graph Theory 18 (1998) 113-125, doi: 10.7151/dmgt.1068. Zbl0912.05048
- [5] I. Broere, S. Dorfling and E. Jonck, Generalized chromatic numbers and additive hereditary properties of graphs, Discuss. Math. Graph Theory 22 (2002) 259-270, doi: 10.7151/dmgt.1174. Zbl1030.05038
- [6] J. Nesetril and V. Rödl, Simple proof of the existence of restricted Ramsey graphs by means of a partite construction, Combinatorica 1 (2) (1981) 199-202, doi: 10.1007/BF02579274. Zbl0491.05044
Citations in EuDML Documents
top- Július Czap, Peter Mihók, Fractional Q-Edge-Coloring of Graphs
- Mieczysław Borowiecki, Arnfried Kemnitz, Massimiliano Marangio, Peter Mihók, Generalized total colorings of graphs
- Arnfried Kemnitz, Massimiliano Marangio, Peter Mihók, Janka Oravcová, Roman Soták, Generalized Fractional and Circular Total Colorings of Graphs
- Samantha Dorfling, Tomáš Vetrík, Edge-colouring of graphs and hereditary graph properties
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.