The order of uniquely partitionable graphs
Izak Broere; Marietjie Frick; Peter Mihók
Discussiones Mathematicae Graph Theory (1997)
- Volume: 17, Issue: 1, page 115-125
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topIzak Broere, Marietjie Frick, and Peter Mihók. "The order of uniquely partitionable graphs." Discussiones Mathematicae Graph Theory 17.1 (1997): 115-125. <http://eudml.org/doc/270714>.
@article{IzakBroere1997,
abstract = {Let ₁,...,ₙ be properties of graphs. A (₁,...,ₙ)-partition of a graph G is a partition V₁,...,Vₙ of V(G) such that, for each i = 1,...,n, the subgraph of G induced by $V_i$ has property $_i$. If a graph G has a unique (₁,...,ₙ)-partition we say it is uniquely (₁,...,ₙ)-partitionable. We establish best lower bounds for the order of uniquely (₁,...,ₙ)-partitionable graphs, for various choices of ₁,...,ₙ.},
author = {Izak Broere, Marietjie Frick, Peter Mihók},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {hereditary property of graphs; uniquely partitionable graphs; partition},
language = {eng},
number = {1},
pages = {115-125},
title = {The order of uniquely partitionable graphs},
url = {http://eudml.org/doc/270714},
volume = {17},
year = {1997},
}
TY - JOUR
AU - Izak Broere
AU - Marietjie Frick
AU - Peter Mihók
TI - The order of uniquely partitionable graphs
JO - Discussiones Mathematicae Graph Theory
PY - 1997
VL - 17
IS - 1
SP - 115
EP - 125
AB - Let ₁,...,ₙ be properties of graphs. A (₁,...,ₙ)-partition of a graph G is a partition V₁,...,Vₙ of V(G) such that, for each i = 1,...,n, the subgraph of G induced by $V_i$ has property $_i$. If a graph G has a unique (₁,...,ₙ)-partition we say it is uniquely (₁,...,ₙ)-partitionable. We establish best lower bounds for the order of uniquely (₁,...,ₙ)-partitionable graphs, for various choices of ₁,...,ₙ.
LA - eng
KW - hereditary property of graphs; uniquely partitionable graphs; partition
UR - http://eudml.org/doc/270714
ER -
References
top- [1] G. Benadé, I. Broere, B. Jonck and M. Frick, Uniquely -colourable graphs and k-τ-saturated graphs, Discrete Math. 162 (1996) 13-22, doi: 10.1016/0012-365X(95)00301-C. Zbl0870.05026
- [2] M. Borowiecki, P. Mihók, Hereditary properties of graphs, in: Advances in Graph Theory (Vishwa Internat. Publ., 1991) 41-68.
- [3] I. Broere and M. Frick, On the order of uniquely (k,m)-colourable graphs, Discrete Math. 82 (1990) 225-232, doi: 10.1016/0012-365X(90)90200-2. Zbl0712.05024
- [4] I. Broere, M. Frick and G. Semanišin, Maximal graphs with respect to hereditary properties, Discussiones Mathematicae Graph Theory 17 (1997) 51-66, doi: 10.7151/dmgt.1038. Zbl0902.05027
- [5] G. Chartrand and L. Lesniak, Graphs and Digraphs (Second Edition, Wadsworth & Brooks/Cole, Monterey, 1986). Zbl0666.05001
- [6] M. Frick, On replete graphs, J. Graph Theory 16 (1992) 165-175, doi: 10.1002/jgt.3190160208. Zbl0763.05044
- [7] M. Frick and M.A. Henning, Extremal results on defective colourings of graphs, Discrete Math. 126 (1994) 151-158, doi: 10.1016/0012-365X(94)90260-7. Zbl0794.05029
- [8] P. Mihók, Additive hereditary properties and uniquely partitionable graphs, in: Graphs, Hypergraphs and Matroids (Zielona Góra, 1985) 49-58. Zbl0623.05043
- [9] P. Mihók and G. Semanišin, Reducible properties of graphs, Discussiones Math. Graph Theory 15 (1995) 11-18, doi: 10.7151/dmgt.1002. Zbl0829.05057
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.