Unique factorisation of additive induced-hereditary properties
Alastair Farrugia; R. Bruce Richter
Discussiones Mathematicae Graph Theory (2004)
- Volume: 24, Issue: 2, page 319-343
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] I. Broere and J. Bucko, Divisibility in additive hereditary properties and uniquely partitionable graphs, Tatra Mt. Math. Publ. 18 (1999) 79-87. Zbl0951.05034
- [2] I. Broere, M. Frick and G. Semanišin, Maximal graphs with respect to hereditary properties, Discuss. Math. Graph Theory 17 (1997) 51-66, doi: 10.7151/dmgt.1038. Zbl0902.05027
- [3] A. Farrugia, Vertex-partitioning into fixed additive induced-hereditary properties is NP-hard, submitted. Zbl1053.05046
- [4] A. Farrugia and R.B. Richter, Complexity, uniquely partitionable graphs and unique factorisation, in preparation. www.math.uwaterloo.ca/∼afarrugia/
- [5] A. Farrugia and R.B. Richter, Unique factorisation of induced-hereditary disjoint compositive properties, Research Report CORR 2002-ZZ (2002) Department of Combinatorics and Optimization, University of Waterloo. www.math.uwaterloo.ca/~afarrugia/. Zbl1061.05070
- [6] J. Kratochvil and P. Mihók, Hom-properties are uniquely factorizable into irreducible factors, Discrete Math. 213 (2000) 189-194, doi: 10.1016/S0012-365X(99)00179-X. Zbl0949.05025
- [7] P. Mihók, Unique Factorization Theorem, Discuss. Math. Graph Theory 20 (2000) 143-153, doi: 10.7151/dmgt.1114. Zbl0968.05032
- [8] P. Mihók, G. Semanišin and R. Vasky, Additive and hereditary properties of graphs are uniquely factorizable into irreducible factors, J. Graph Theory 33 (2000) 44-53, doi: 10.1002/(SICI)1097-0118(200001)33:1<44::AID-JGT5>3.0.CO;2-O Zbl0942.05056
- [9] G. Semanišin, On generating sets of hereditary properties, unpublished manuscript.
- [10] J. Szigeti and Zs. Tuza, Generalized colorings and avoidable orientations, Discuss. Math. Graph Theory 17 (1997) 137-146, doi: 10.7151/dmgt.1047. Zbl0908.05039