Unique factorisation of additive induced-hereditary properties

Alastair Farrugia; R. Bruce Richter

Discussiones Mathematicae Graph Theory (2004)

  • Volume: 24, Issue: 2, page 319-343
  • ISSN: 2083-5892

Abstract

top
An additive hereditary graph property is a set of graphs, closed under isomorphism and under taking subgraphs and disjoint unions. Let ₁,...,ₙ be additive hereditary graph properties. A graph G has property (₁∘...∘ₙ) if there is a partition (V₁,...,Vₙ) of V(G) into n sets such that, for all i, the induced subgraph G [ V i ] is in i . A property is reducible if there are properties , such that = ∘ ; otherwise it is irreducible. Mihók, Semanišin and Vasky [8] gave a factorisation for any additive hereditary property into a given number dc() of irreducible additive hereditary factors. Mihók [7] gave a similar factorisation for properties that are additive and induced-hereditary (closed under taking induced-subgraphs and disjoint unions). Their results left open the possiblity of different factorisations, maybe even with a different number of factors; we prove here that the given factorisations are, in fact, unique.

How to cite

top

Alastair Farrugia, and R. Bruce Richter. "Unique factorisation of additive induced-hereditary properties." Discussiones Mathematicae Graph Theory 24.2 (2004): 319-343. <http://eudml.org/doc/270750>.

@article{AlastairFarrugia2004,
abstract = {An additive hereditary graph property is a set of graphs, closed under isomorphism and under taking subgraphs and disjoint unions. Let ₁,...,ₙ be additive hereditary graph properties. A graph G has property (₁∘...∘ₙ) if there is a partition (V₁,...,Vₙ) of V(G) into n sets such that, for all i, the induced subgraph $G[V_i]$ is in $_i$. A property is reducible if there are properties , such that = ∘ ; otherwise it is irreducible. Mihók, Semanišin and Vasky [8] gave a factorisation for any additive hereditary property into a given number dc() of irreducible additive hereditary factors. Mihók [7] gave a similar factorisation for properties that are additive and induced-hereditary (closed under taking induced-subgraphs and disjoint unions). Their results left open the possiblity of different factorisations, maybe even with a different number of factors; we prove here that the given factorisations are, in fact, unique.},
author = {Alastair Farrugia, R. Bruce Richter},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {additive and hereditary graph classes; unique factorization},
language = {eng},
number = {2},
pages = {319-343},
title = {Unique factorisation of additive induced-hereditary properties},
url = {http://eudml.org/doc/270750},
volume = {24},
year = {2004},
}

TY - JOUR
AU - Alastair Farrugia
AU - R. Bruce Richter
TI - Unique factorisation of additive induced-hereditary properties
JO - Discussiones Mathematicae Graph Theory
PY - 2004
VL - 24
IS - 2
SP - 319
EP - 343
AB - An additive hereditary graph property is a set of graphs, closed under isomorphism and under taking subgraphs and disjoint unions. Let ₁,...,ₙ be additive hereditary graph properties. A graph G has property (₁∘...∘ₙ) if there is a partition (V₁,...,Vₙ) of V(G) into n sets such that, for all i, the induced subgraph $G[V_i]$ is in $_i$. A property is reducible if there are properties , such that = ∘ ; otherwise it is irreducible. Mihók, Semanišin and Vasky [8] gave a factorisation for any additive hereditary property into a given number dc() of irreducible additive hereditary factors. Mihók [7] gave a similar factorisation for properties that are additive and induced-hereditary (closed under taking induced-subgraphs and disjoint unions). Their results left open the possiblity of different factorisations, maybe even with a different number of factors; we prove here that the given factorisations are, in fact, unique.
LA - eng
KW - additive and hereditary graph classes; unique factorization
UR - http://eudml.org/doc/270750
ER -

References

top
  1. [1] I. Broere and J. Bucko, Divisibility in additive hereditary properties and uniquely partitionable graphs, Tatra Mt. Math. Publ. 18 (1999) 79-87. Zbl0951.05034
  2. [2] I. Broere, M. Frick and G. Semanišin, Maximal graphs with respect to hereditary properties, Discuss. Math. Graph Theory 17 (1997) 51-66, doi: 10.7151/dmgt.1038. Zbl0902.05027
  3. [3] A. Farrugia, Vertex-partitioning into fixed additive induced-hereditary properties is NP-hard, submitted. Zbl1053.05046
  4. [4] A. Farrugia and R.B. Richter, Complexity, uniquely partitionable graphs and unique factorisation, in preparation. www.math.uwaterloo.ca/∼afarrugia/ 
  5. [5] A. Farrugia and R.B. Richter, Unique factorisation of induced-hereditary disjoint compositive properties, Research Report CORR 2002-ZZ (2002) Department of Combinatorics and Optimization, University of Waterloo. www.math.uwaterloo.ca/~afarrugia/. Zbl1061.05070
  6. [6] J. Kratochvil and P. Mihók, Hom-properties are uniquely factorizable into irreducible factors, Discrete Math. 213 (2000) 189-194, doi: 10.1016/S0012-365X(99)00179-X. Zbl0949.05025
  7. [7] P. Mihók, Unique Factorization Theorem, Discuss. Math. Graph Theory 20 (2000) 143-153, doi: 10.7151/dmgt.1114. Zbl0968.05032
  8. [8] P. Mihók, G. Semanišin and R. Vasky, Additive and hereditary properties of graphs are uniquely factorizable into irreducible factors, J. Graph Theory 33 (2000) 44-53, doi: 10.1002/(SICI)1097-0118(200001)33:1<44::AID-JGT5>3.0.CO;2-O Zbl0942.05056
  9. [9] G. Semanišin, On generating sets of hereditary properties, unpublished manuscript. 
  10. [10] J. Szigeti and Zs. Tuza, Generalized colorings and avoidable orientations, Discuss. Math. Graph Theory 17 (1997) 137-146, doi: 10.7151/dmgt.1047. Zbl0908.05039

NotesEmbed ?

top

You must be logged in to post comments.