# On the packing of two copies of a caterpillar in its third power

Christian Germain; Hamamache Kheddouci

Discussiones Mathematicae Graph Theory (2003)

- Volume: 23, Issue: 1, page 105-115
- ISSN: 2083-5892

## Access Full Article

top## Abstract

top## How to cite

topChristian Germain, and Hamamache Kheddouci. "On the packing of two copies of a caterpillar in its third power." Discussiones Mathematicae Graph Theory 23.1 (2003): 105-115. <http://eudml.org/doc/270752>.

@article{ChristianGermain2003,

abstract = {H. Kheddouci, J.F. Saclé and M. Woźniak conjectured in 2000 that if a tree T is not a star, then there is an edge-disjoint placement of T into its third power.In this paper, we prove the conjecture for caterpillars.},

author = {Christian Germain, Hamamache Kheddouci},

journal = {Discussiones Mathematicae Graph Theory},

keywords = {packing; placement; permutation; power of tree; caterpillar},

language = {eng},

number = {1},

pages = {105-115},

title = {On the packing of two copies of a caterpillar in its third power},

url = {http://eudml.org/doc/270752},

volume = {23},

year = {2003},

}

TY - JOUR

AU - Christian Germain

AU - Hamamache Kheddouci

TI - On the packing of two copies of a caterpillar in its third power

JO - Discussiones Mathematicae Graph Theory

PY - 2003

VL - 23

IS - 1

SP - 105

EP - 115

AB - H. Kheddouci, J.F. Saclé and M. Woźniak conjectured in 2000 that if a tree T is not a star, then there is an edge-disjoint placement of T into its third power.In this paper, we prove the conjecture for caterpillars.

LA - eng

KW - packing; placement; permutation; power of tree; caterpillar

UR - http://eudml.org/doc/270752

ER -

## References

top- [1] B. Bollobás, Extremal Graph Theory (Academic Press, London, 1978).
- [2] S. Brandt, Embedding graphs without short cycles in their complements, in: Y. Alavi and A. Schwenk, eds., Graph Theory, Combinatorics, and Applications of Graphs, Vol. 1 (John Wiley and Sons, 1995), 115-121. Zbl0843.05026
- [3] D. Burns and S. Schuster, Every (p,p-2) graph is contained in its complement, J. Graph Theory 1 (1977) 277-279, doi: 10.1002/jgt.3190010308. Zbl0375.05046
- [4] S.M. Hedetniemi, S.T. Hedetniemi and P.J. Slater, A note on packing two trees into ${K}_{N}$, Ars Combin. 11 (1981) 149-153. Zbl0491.05050
- [5] H. Kheddouci, Packing of some trees into their third power, to appear in Appl. Math. Letters. Zbl1039.05048
- [6] H. Kheddouci, J.F. Saclé and M. Woźniak, Packing of two copies of a tree into its fourth power, Discrete Math. 213 (2000) 169-178, doi: 10.1016/S0012-365X(99)00177-6. Zbl0956.05080
- [7] N. Sauer and J. Spencer, Edge disjoint placement of graphs, J. Combin. Theory (B) 25 (1978) 295-302, doi: 10.1016/0095-8956(78)90005-9. Zbl0417.05037
- [8] H. Wang and N. Sauer, Packing three copies of a tree into a complete graph, Europ. J. Combin. 14 (1993) 137-142, doi: 10.1006/eujc.1993.1018. Zbl0773.05084
- [9] M. Woźniak, A note on embedding graphs without small cycles, Colloq. Math. Soc. J. Bolyai 60 (1991) 727-732.
- [10] M. Woźniak, Packing of Graphs, Dissertationes Math. CCCLXII (1997) pp. 78.
- [11] H.P. Yap, Some Topics in Graph Theory, London Mathematical Society, Lectures Notes Series 108 (Cambridge University Press, Cambridge, 1986). Zbl0588.05002

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.