n-ary transit functions in graphs
Manoj Changat; Joseph Mathews; Iztok Peterin; Prasanth G. Narasimha-Shenoi
Discussiones Mathematicae Graph Theory (2010)
- Volume: 30, Issue: 4, page 671-685
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topManoj Changat, et al. "n-ary transit functions in graphs." Discussiones Mathematicae Graph Theory 30.4 (2010): 671-685. <http://eudml.org/doc/270794>.
@article{ManojChangat2010,
abstract = {n-ary transit functions are introduced as a generalization of binary (2-ary) transit functions. We show that they can be associated with convexities in natural way and discuss the Steiner convexity as a natural n-ary generalization of geodesicaly convexity. Furthermore, we generalize the betweenness axioms to n-ary transit functions and discuss the connectivity conditions for underlying hypergraph. Also n-ary all paths transit function is considered.},
author = {Manoj Changat, Joseph Mathews, Iztok Peterin, Prasanth G. Narasimha-Shenoi},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {n-arity; transit function; betweenness; Steiner convexity; -arity},
language = {eng},
number = {4},
pages = {671-685},
title = {n-ary transit functions in graphs},
url = {http://eudml.org/doc/270794},
volume = {30},
year = {2010},
}
TY - JOUR
AU - Manoj Changat
AU - Joseph Mathews
AU - Iztok Peterin
AU - Prasanth G. Narasimha-Shenoi
TI - n-ary transit functions in graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2010
VL - 30
IS - 4
SP - 671
EP - 685
AB - n-ary transit functions are introduced as a generalization of binary (2-ary) transit functions. We show that they can be associated with convexities in natural way and discuss the Steiner convexity as a natural n-ary generalization of geodesicaly convexity. Furthermore, we generalize the betweenness axioms to n-ary transit functions and discuss the connectivity conditions for underlying hypergraph. Also n-ary all paths transit function is considered.
LA - eng
KW - n-arity; transit function; betweenness; Steiner convexity; -arity
UR - http://eudml.org/doc/270794
ER -
References
top- [1] B. Bresar, M. Changat, J. Mathews, I. Peterin, P.G. Narasimha-Shenoi and A. Tepeh Horvat, Steiner intervals, geodesic intervals, and betweenness, Discrete Math. 309 (2009) 6114-6125, doi: 10.1016/j.disc.2009.05.022. Zbl1188.05058
- [2] M. Changat, S. Klavžar and H.M. Mulder, The All-Paths Transit Function of a Graph, Czechoslovak Math. J. 51 (126) (2001) 439-448. Zbl0977.05135
- [3] M. Changat and J. Mathew, Induced path transit function, monotone and Peano axioms, Discrete Math. 286 (2004) 185-194, doi: 10.1016/j.disc.2004.02.017. Zbl1056.05044
- [4] M. Changat and J. Mathew, Characterizations of J-monotone graphs, in: Convexity in Discrete Structures (M. Changat, S. Klavžar, H.M. Mulder, A. Vijayakumar, eds.), Lecture Notes Ser. 5, Ramanujan Math. Soc. (2008) 47-55. Zbl1166.05017
- [5] M. Changat, J. Mathew and H.M. Mulder, Induced path function, betweenness and monotonicity, Discrete Appl. Math. 158 (2010) 426-433, doi: 10.1016/j.dam.2009.10.004. Zbl1225.05146
- [6] M. Changat, J. Mathew and H.M. Mulder, Induced path transit function, betweenness and monotonicity, Elect. Notes Discrete Math. 15 (2003). Zbl1259.05052
- [7] M. Changat, H.M. Mulder and G. Sierksma, Convexities Related to Path Properties on Graphs, Discrete Math. 290 (2005) 117-131, doi: 10.1016/j.disc.2003.07.014. Zbl1058.05043
- [8] M. Changat, P.G. Narasimha-Shenoi and I.M. Pelayo, The longest path transit function and its betweenness, to appear in Util. Math. Zbl1232.05107
- [9] P. Duchet, Convexity in combinatorial structures, Rend. Circ. Mat. Palermo (2) Suppl. 14 (1987) 261-293. Zbl0644.52001
- [10] P. Duchet, Convex sets in graphs II. Minimal path convexity, J. Combin. Theory (B) 44 (1988) 307-316, doi: 10.1016/0095-8956(88)90039-1. Zbl0672.52001
- [11] P. Duchet, Discrete convexity: retractions, morphisms and partition problem, in: Proceedings of the conference on graph connections, India, (1998), Allied Publishers, New Delhi, 10-18. Zbl0957.05030
- [12] P. Hall, On representation of subsets, J. Lon. Mat. Sc. 10 (1935) 26-30, doi: 10.1112/jlms/s1-10.37.26. Zbl0010.34503
- [13] M.A. Morgana and H.M. Mulder, The induced path convexity, betweenness and svelte graphs, Discrete Math. 254 (2002) 349-370, doi: 10.1016/S0012-365X(01)00296-5. Zbl1003.05090
- [14] H.M. Mulder, The Interval Function of a Graph. Mathematical Centre Tracts 132, Mathematisch Centrum (Amsterdam, 1980). Zbl0446.05039
- [15] H.M. Mulder, Transit functions on graphs (and posets), in: Convexity in Discrete Structures (M. Changat, S. Klavžar, H.M. Mulder, A. Vijayakumar, eds.), Lecture Notes Ser. 5, Ramanujan Math. Soc. (2008) 117-130. Zbl1166.05019
- [16] L. Nebeský, A characterization of the interval function of a connected graph, Czechoslovak Math. J. 44(119) (1994) 173-178. Zbl0808.05046
- [17] L. Nebeský, A Characterization of the interval function of a (finite or infinite) connected graph, Czechoslovak Math. J. 51(126) (2001) 635-642. Zbl1079.05505
- [18] E. Sampathkumar, Convex sets in graphs, Indian J. Pure Appl. Math. 15 (1984) 1065-1071. Zbl0563.52001
- [19] M.L.J. van de Vel, Theory of Convex Structures (North Holland, Amsterdam, 1993). Zbl0785.52001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.