# A characterization of the interval function of a connected graph

Czechoslovak Mathematical Journal (1994)

- Volume: 44, Issue: 1, page 173-178
- ISSN: 0011-4642

## Access Full Article

top## How to cite

topNebeský, Ladislav. "A characterization of the interval function of a connected graph." Czechoslovak Mathematical Journal 44.1 (1994): 173-178. <http://eudml.org/doc/31396>.

@article{Nebeský1994,

author = {Nebeský, Ladislav},

journal = {Czechoslovak Mathematical Journal},

keywords = {interval function; path; characterization},

language = {eng},

number = {1},

pages = {173-178},

publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},

title = {A characterization of the interval function of a connected graph},

url = {http://eudml.org/doc/31396},

volume = {44},

year = {1994},

}

TY - JOUR

AU - Nebeský, Ladislav

TI - A characterization of the interval function of a connected graph

JO - Czechoslovak Mathematical Journal

PY - 1994

PB - Institute of Mathematics, Academy of Sciences of the Czech Republic

VL - 44

IS - 1

SP - 173

EP - 178

LA - eng

KW - interval function; path; characterization

UR - http://eudml.org/doc/31396

ER -

## References

top- Graphs & Digraphs, Prindle, Weber & Schmidt, Boston, 1979. (1979) MR0525578
- 10.4153/CJM-1965-034-0, Canad. J. Math. 17 (1965), 342–346. (1965) MR0175113DOI10.4153/CJM-1965-034-0
- The Interval Function of a Graph, Mathematisch Centrum, Amsterdam, 1980. (1980) Zbl0446.05039MR0605838
- A characterization of the set of all shortest path in a connected graph, Math. Boh. 119 (1994), 15–20. (1994) MR1303548

## Citations in EuDML Documents

top- Manoj Changat, Sandi Klavžar, Henry Martyn Mulder, The all-paths transit function of a graph
- Ladislav Nebeský, A characterization of the interval function of a (finite or infinite) connected graph
- Ladislav Nebeský, Visibilities and sets of shortest paths in a connected graph
- Ladislav Nebeský, Characterizing the interval function of a connected graph
- Gary Chartrand, Ping Zhang, $H$-convex graphs
- Gary Chartrand, Ping Zhang, On graphs with a unique minimum hull set
- Gary Chartrand, Frank Harary, Ping Zhang, Geodetic sets in graphs
- Manoj Changat, Joseph Mathews, Iztok Peterin, Prasanth G. Narasimha-Shenoi, n-ary transit functions in graphs
- Gary Chartrand, Ping Zhang, Extreme geodesic graphs
- Gary Chartrand, Ping Zhang, The forcing convexity number of a graph

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.