A characterization of the interval function of a connected graph
Czechoslovak Mathematical Journal (1994)
- Volume: 44, Issue: 1, page 173-178
- ISSN: 0011-4642
Access Full Article
topHow to cite
topReferences
top- Graphs & Digraphs, Prindle, Weber & Schmidt, Boston, 1979. (1979) MR0525578
- 10.4153/CJM-1965-034-0, Canad. J. Math. 17 (1965), 342–346. (1965) MR0175113DOI10.4153/CJM-1965-034-0
- The Interval Function of a Graph, Mathematisch Centrum, Amsterdam, 1980. (1980) Zbl0446.05039MR0605838
- A characterization of the set of all shortest path in a connected graph, Math. Boh. 119 (1994), 15–20. (1994) MR1303548
Citations in EuDML Documents
top- Ladislav Nebeský, A characterization of the interval function of a (finite or infinite) connected graph
- Manoj Changat, Sandi Klavžar, Henry Martyn Mulder, The all-paths transit function of a graph
- Ladislav Nebeský, Visibilities and sets of shortest paths in a connected graph
- Ladislav Nebeský, Characterizing the interval function of a connected graph
- Gary Chartrand, Ping Zhang, -convex graphs
- Gary Chartrand, Ping Zhang, On graphs with a unique minimum hull set
- Gary Chartrand, Frank Harary, Ping Zhang, Geodetic sets in graphs
- Manoj Changat, Joseph Mathews, Iztok Peterin, Prasanth G. Narasimha-Shenoi, n-ary transit functions in graphs
- Gary Chartrand, Ping Zhang, The forcing convexity number of a graph
- Gary Chartrand, Ping Zhang, Extreme geodesic graphs