A characterization of the interval function of a connected graph
Czechoslovak Mathematical Journal (1994)
- Volume: 44, Issue: 1, page 173-178
- ISSN: 0011-4642
Access Full Article
topHow to cite
topNebeský, Ladislav. "A characterization of the interval function of a connected graph." Czechoslovak Mathematical Journal 44.1 (1994): 173-178. <http://eudml.org/doc/31396>.
@article{Nebeský1994,
author = {Nebeský, Ladislav},
journal = {Czechoslovak Mathematical Journal},
keywords = {interval function; path; characterization},
language = {eng},
number = {1},
pages = {173-178},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A characterization of the interval function of a connected graph},
url = {http://eudml.org/doc/31396},
volume = {44},
year = {1994},
}
TY - JOUR
AU - Nebeský, Ladislav
TI - A characterization of the interval function of a connected graph
JO - Czechoslovak Mathematical Journal
PY - 1994
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 44
IS - 1
SP - 173
EP - 178
LA - eng
KW - interval function; path; characterization
UR - http://eudml.org/doc/31396
ER -
References
top- Graphs & Digraphs, Prindle, Weber & Schmidt, Boston, 1979. (1979) MR0525578
- 10.4153/CJM-1965-034-0, Canad. J. Math. 17 (1965), 342–346. (1965) MR0175113DOI10.4153/CJM-1965-034-0
- The Interval Function of a Graph, Mathematisch Centrum, Amsterdam, 1980. (1980) Zbl0446.05039MR0605838
- A characterization of the set of all shortest path in a connected graph, Math. Boh. 119 (1994), 15–20. (1994) MR1303548
Citations in EuDML Documents
top- Manoj Changat, Sandi Klavžar, Henry Martyn Mulder, The all-paths transit function of a graph
- Ladislav Nebeský, A characterization of the interval function of a (finite or infinite) connected graph
- Ladislav Nebeský, Visibilities and sets of shortest paths in a connected graph
- Ladislav Nebeský, Characterizing the interval function of a connected graph
- Gary Chartrand, Ping Zhang, -convex graphs
- Gary Chartrand, Ping Zhang, On graphs with a unique minimum hull set
- Gary Chartrand, Frank Harary, Ping Zhang, Geodetic sets in graphs
- Manoj Changat, Joseph Mathews, Iztok Peterin, Prasanth G. Narasimha-Shenoi, n-ary transit functions in graphs
- Gary Chartrand, Ping Zhang, Extreme geodesic graphs
- Gary Chartrand, Ping Zhang, The forcing convexity number of a graph
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.