The all-paths transit function of a graph
Manoj Changat; Sandi Klavžar; Henry Martyn Mulder
Czechoslovak Mathematical Journal (2001)
- Volume: 51, Issue: 2, page 439-448
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChangat, Manoj, Klavžar, Sandi, and Mulder, Henry Martyn. "The all-paths transit function of a graph." Czechoslovak Mathematical Journal 51.2 (2001): 439-448. <http://eudml.org/doc/30646>.
@article{Changat2001,
abstract = {A transit function $R$ on a set $V$ is a function $R\:V\times V\rightarrow 2^\{V\}$ satisfying the axioms $u\in R(u,v)$, $R(u,v)=R(v,u)$ and $R(u,u)=\lbrace u\rbrace $, for all $u,v \in V$. The all-paths transit function of a connected graph is characterized by transit axioms.},
author = {Changat, Manoj, Klavžar, Sandi, Mulder, Henry Martyn},
journal = {Czechoslovak Mathematical Journal},
keywords = {all-paths convexity; transit function; block graph; all-paths convexity; transit function; block graph},
language = {eng},
number = {2},
pages = {439-448},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The all-paths transit function of a graph},
url = {http://eudml.org/doc/30646},
volume = {51},
year = {2001},
}
TY - JOUR
AU - Changat, Manoj
AU - Klavžar, Sandi
AU - Mulder, Henry Martyn
TI - The all-paths transit function of a graph
JO - Czechoslovak Mathematical Journal
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 51
IS - 2
SP - 439
EP - 448
AB - A transit function $R$ on a set $V$ is a function $R\:V\times V\rightarrow 2^{V}$ satisfying the axioms $u\in R(u,v)$, $R(u,v)=R(v,u)$ and $R(u,u)=\lbrace u\rbrace $, for all $u,v \in V$. The all-paths transit function of a connected graph is characterized by transit axioms.
LA - eng
KW - all-paths convexity; transit function; block graph; all-paths convexity; transit function; block graph
UR - http://eudml.org/doc/30646
ER -
References
top- Convexity in combinatorial structures, Rend. Circ. Mat. Palermo (2) Suppl. 14 (1987), 261–293. (1987) Zbl0644.52001MR0920860
- 10.1016/0095-8956(88)90039-1, J. Combin. Theory Ser. B 44 (1988), 307–316. (1988) Zbl0672.52001MR0941439DOI10.1016/0095-8956(88)90039-1
- 10.1112/jlms/s2-3.3.422, J. London Math. Soc. 3 (1971), 422–428. (1971) Zbl0228.52001MR0288664DOI10.1112/jlms/s2-3.3.422
- 10.1137/0607049, SIAM J. Algebraic Discrete Methods 7 (1986), 433–444. (1986) MR0844046DOI10.1137/0607049
- Median graphs: characterizations, location theory and related structures, J. Combin. Math. Combin. Comput. 30 (1999), 103–127. (1999) MR1705337
- The Interval Function of a Graph, Mathematical Centre Tracts 132, Mathematisch Centrum, Amsterdam, 1980. (1980) Zbl0446.05039MR0605838
- Transit functions on graphs, In preparation. Zbl1166.05019
- The induced path convexity, betweenness, and svelte graphs, Discrete Math (to appear). (to appear) MR1910118
- A characterization of the interval function of a connected graph, Czechoslovak Math. J. 44(119) (1994), 173–178. (1994) MR1257943
- Characterizing the interval function of a connected graph, Math. Bohem. 123(2) (1998), 137–144. (1998) MR1673965
- Convex sets in graphs, Indian J. Pure Appl. Math. 15 (1984), 1065–1071. (1984) MR0765010
- Theory of Convex Structures, North Holland, Amsterdam, 1993. (1993) MR1234493
Citations in EuDML Documents
top- Manoj Changat, Joseph Mathews, Iztok Peterin, Prasanth G. Narasimha-Shenoi, n-ary transit functions in graphs
- Henry Martyn Mulder, Ladislav Nebeský, Leaps: an approach to the block structure of a graph
- Ladislav Nebeský, The induced paths in a connected graph and a ternary relation determined by them
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.