Morley’s Trisector Theorem
Formalized Mathematics (2015)
- Volume: 23, Issue: 2, page 75-79
- ISSN: 1426-2630
Access Full Article
topAbstract
topHow to cite
topRoland Coghetto. "Morley’s Trisector Theorem." Formalized Mathematics 23.2 (2015): 75-79. <http://eudml.org/doc/271793>.
@article{RolandCoghetto2015,
abstract = {Morley’s trisector theorem states that “The points of intersection of the adjacent trisectors of the angles of any triangle are the vertices of an equilateral triangle” [10]. There are many proofs of Morley’s trisector theorem [12, 16, 9, 13, 8, 20, 3, 18]. We follow the proof given by A. Letac in [15].},
author = {Roland Coghetto},
journal = {Formalized Mathematics},
keywords = {Euclidean geometry; Morley’s trisector theorem; equilateral triangle; Morley's trisector theorem},
language = {eng},
number = {2},
pages = {75-79},
title = {Morley’s Trisector Theorem},
url = {http://eudml.org/doc/271793},
volume = {23},
year = {2015},
}
TY - JOUR
AU - Roland Coghetto
TI - Morley’s Trisector Theorem
JO - Formalized Mathematics
PY - 2015
VL - 23
IS - 2
SP - 75
EP - 79
AB - Morley’s trisector theorem states that “The points of intersection of the adjacent trisectors of the angles of any triangle are the vertices of an equilateral triangle” [10]. There are many proofs of Morley’s trisector theorem [12, 16, 9, 13, 8, 20, 3, 18]. We follow the proof given by A. Letac in [15].
LA - eng
KW - Euclidean geometry; Morley’s trisector theorem; equilateral triangle; Morley's trisector theorem
UR - http://eudml.org/doc/271793
ER -
References
top- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
- [3] Alexander Bogomolny. Morley’s miracle from interactive mathematics miscellany and puzzles. Cut the Knot, 2015.
- [4] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
- [5] Czesław Bylinski. Introduction to real linear topological spaces. Formalized Mathematics, 13(1):99-107, 2005.
- [6] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- [7] Roland Coghetto. Some facts about trigonometry and Euclidean geometry. Formalized Mathematics, 22(4):313-319, 2014. doi:10.2478/forma-2014-0031. Zbl1316.51006
- [8] Alain Connes. A new proof of Morley’s theorem. Publications Math´ematiques de l’IH ´ES, 88:43-46, 1998.
- [9] John Conway. On Morley’s trisector theorem. The Mathematical Intelligencer, 36(3):3, 2014. ISSN 0343-6993. doi:10.1007/s00283-014-9463-3. Zbl1308.51017
- [10] H.S.M. Coxeter and S.L. Greitzer. Geometry Revisited. The Mathematical Association of America (Inc.), 1967. Zbl0166.16402
- [11] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
- [12] Cesare Donolato. A vector-based proof of Morley’s trisector theorem. In Forum Geometricorum, volume 13, pages 233-235, 2013. Zbl1282.51007
- [13] O.A.S. Karamzadeh. Is John Conway’s proof of Morley’s theorem the simplest and free of A Deus Ex Machina ? The Mathematical Intelligencer, 36(3):4-7, 2014. ISSN 0343-6993. doi:10.1007/s00283-014-9481-1. Zbl1309.51008
- [14] Akihiro Kubo and Yatsuka Nakamura. Angle and triangle in Euclidean topological space. Formalized Mathematics, 11(3):281-287, 2003.
- [15] A. Letac. Solutions (Morley’s triangle). Problem N 490. Sphinx: revue mensuelle des questions r´ecr´eatives, 9, 1939.
- [16] Eli Maor and Eugen Jost. Beautiful geometry. Princeton University Press, 2014. Zbl1323.51001
- [17] Robert Milewski. Trigonometric form of complex numbers. Formalized Mathematics, 9 (3):455-460, 2001.
- [18] Cletus O. Oakley and Justine C. Baker. The Morley trisector theorem. American Mathematical Monthly, pages 737-745, 1978. Zbl0406.01008
- [19] Marco Riccardi. Heron’s formula and Ptolemy’s theorem. Formalized Mathematics, 16 (2):97-101, 2008. doi:10.2478/v10037-008-0014-2.
- [20] Brian Stonebridge. A simple geometric proof of Morley’s trisector theorem. Applied Probability Trust, 2009.
- [21] Andrzej Trybulec and Czesław Bylinski. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
- [22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.
- [24] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.