Altitude, Orthocenter of a Triangle and Triangulation
Formalized Mathematics (2016)
- Volume: 24, Issue: 1, page 27-36
- ISSN: 1426-2630
Access Full Article
topAbstract
topHow to cite
topRoland Coghetto. "Altitude, Orthocenter of a Triangle and Triangulation." Formalized Mathematics 24.1 (2016): 27-36. <http://eudml.org/doc/286771>.
@article{RolandCoghetto2016,
abstract = {We introduce the altitudes of a triangle (the cevians perpendicular to the opposite sides). Using the generalized Ceva’s Theorem, we prove the existence and uniqueness of the orthocenter of a triangle [7]. Finally, we formalize in Mizar [1] some formulas [2] to calculate distance using triangulation.},
author = {Roland Coghetto},
journal = {Formalized Mathematics},
keywords = {Euclidean geometry; trigonometry; altitude; orthocenter; triangulation; distance},
language = {eng},
number = {1},
pages = {27-36},
title = {Altitude, Orthocenter of a Triangle and Triangulation},
url = {http://eudml.org/doc/286771},
volume = {24},
year = {2016},
}
TY - JOUR
AU - Roland Coghetto
TI - Altitude, Orthocenter of a Triangle and Triangulation
JO - Formalized Mathematics
PY - 2016
VL - 24
IS - 1
SP - 27
EP - 36
AB - We introduce the altitudes of a triangle (the cevians perpendicular to the opposite sides). Using the generalized Ceva’s Theorem, we prove the existence and uniqueness of the orthocenter of a triangle [7]. Finally, we formalize in Mizar [1] some formulas [2] to calculate distance using triangulation.
LA - eng
KW - Euclidean geometry; trigonometry; altitude; orthocenter; triangulation; distance
UR - http://eudml.org/doc/286771
ER -
References
top- [1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8 17. Zbl06512423
- [2] R. Campbell. La trigonométrie. Que sais-je? Presses universitaires de France, 1956.
- [3] Wenpai Chang, Yatsuka Nakamura, and Piotr Rudnicki. Inner products and angles of complex numbers. Formalized Mathematics, 11(3):275-280, 2003.
- [4] Roland Coghetto. Some facts about trigonometry and Euclidean geometry. Formalized Mathematics, 22(4):313-319, 2014. doi:10.2478/forma-2014-0031. Zbl1316.51006
- [5] Roland Coghetto. Morley’s trisector theorem. Formalized Mathematics, 23(2):75-79, 2015. doi:10.1515/forma-2015-0007. Zbl1318.51007
- [6] Roland Coghetto. Circumcenter, circumcircle and centroid of a triangle. Formalized Mathematics, 24(1):19-29, 2016. doi:10.1515/forma-2016-0002. Zbl1343.51008
- [7] H.S.M. Coxeter and S.L. Greitzer. Geometry Revisited. The Mathematical Association of America (Inc.), 1967. Zbl0166.16402
- [8] Akihiro Kubo. Lines on planes in n-dimensional Euclidean spaces. Formalized Mathematics, 13(3):389-397, 2005.
- [9] Akihiro Kubo. Lines in n-dimensional Euclidean spaces. Formalized Mathematics, 11(4): 371-376, 2003.
- [10] Akihiro Kubo and Yatsuka Nakamura. Angle and triangle in Euclidean topological space. Formalized Mathematics, 11(3):281-287, 2003.
- [11] Marco Riccardi. Heron’s formula and Ptolemy’s theorem. Formalized Mathematics, 16 (2):97-101, 2008. doi:10.2478/v10037-008-0014-2.
- [12] Boris A. Shminke. Routh’s, Menelaus’ and generalized Ceva’s theorems. Formalized Mathematics, 20(2):157-159, 2012. doi:10.2478/v10037-012-0018-9. Zbl1277.51015
- [13] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
- [14] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.