Wiener and vertex PI indices of the strong product of graphs
Discussiones Mathematicae Graph Theory (2012)
- Volume: 32, Issue: 4, page 749-769
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topK. Pattabiraman, and P. Paulraja. "Wiener and vertex PI indices of the strong product of graphs." Discussiones Mathematicae Graph Theory 32.4 (2012): 749-769. <http://eudml.org/doc/270865>.
@article{K2012,
abstract = {The Wiener index of a connected graph G, denoted by W(G), is defined as $½ ∑_\{u,v ∈ V(G)\}d_G(u,v)$. Similarly, the hyper-Wiener index of a connected graph G, denoted by WW(G), is defined as $½W(G) + ¼ ∑_\{u,v ∈ V(G)\} d²_G(u,v)$. The vertex Padmakar-Ivan (vertex PI) index of a graph G is the sum over all edges uv of G of the number of vertices which are not equidistant from u and v. In this paper, the exact formulae for Wiener, hyper-Wiener and vertex PI indices of the strong product $G ⊠ K_\{m₀,m₁,...,m_\{r -1\}\}$, where $K_\{m₀,m₁,...,m_\{r -1\}\}$ is the complete multipartite graph with partite sets of sizes $m₀,m₁, ...,m_\{r -1\}$, are obtained. Also lower bounds for Wiener and hyper-Wiener indices of strong product of graphs are established.},
author = {K. Pattabiraman, P. Paulraja},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {strong product; Wiener index; hyper-Wiener index; vertex PI index},
language = {eng},
number = {4},
pages = {749-769},
title = {Wiener and vertex PI indices of the strong product of graphs},
url = {http://eudml.org/doc/270865},
volume = {32},
year = {2012},
}
TY - JOUR
AU - K. Pattabiraman
AU - P. Paulraja
TI - Wiener and vertex PI indices of the strong product of graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2012
VL - 32
IS - 4
SP - 749
EP - 769
AB - The Wiener index of a connected graph G, denoted by W(G), is defined as $½ ∑_{u,v ∈ V(G)}d_G(u,v)$. Similarly, the hyper-Wiener index of a connected graph G, denoted by WW(G), is defined as $½W(G) + ¼ ∑_{u,v ∈ V(G)} d²_G(u,v)$. The vertex Padmakar-Ivan (vertex PI) index of a graph G is the sum over all edges uv of G of the number of vertices which are not equidistant from u and v. In this paper, the exact formulae for Wiener, hyper-Wiener and vertex PI indices of the strong product $G ⊠ K_{m₀,m₁,...,m_{r -1}}$, where $K_{m₀,m₁,...,m_{r -1}}$ is the complete multipartite graph with partite sets of sizes $m₀,m₁, ...,m_{r -1}$, are obtained. Also lower bounds for Wiener and hyper-Wiener indices of strong product of graphs are established.
LA - eng
KW - strong product; Wiener index; hyper-Wiener index; vertex PI index
UR - http://eudml.org/doc/270865
ER -
References
top- [1] A.R. Ashrafi and A. Loghman, PI index of zig-zag polyhex nanotubes, MATCH Commun. Math. Comput. Chem. 55 (2006) 447-452. Zbl1104.05023
- [2] A.R. Ashrafi and F. Rezaei, PI index of polyhex nanotori, MATCH Commun. Math. Comput. Chem. 57 (2007) 243-250. Zbl1193.92085
- [3] A.R. Ashrafiand and A. Loghman, PI index of armchair polyhex nanotubes, Ars Combin. 80 (2006) 193-199. Zbl1174.05496
- [4] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory ( Springer-Verlag, New York, 2000). Zbl0938.05001
- [5] H. Deng, S. Chen and J. Zhang, The PI index of phenylenes, J. Math. Chem. 41 (2007) 63-69, doi: 10.1007/s10910-006-9198-2. Zbl1110.92059
- [6] A.A. Dobrynin, R. Entringer and I. Gutman, Wiener index of trees: Theory and applications, Acta Appl. Math. 66 (2001) 211-249, doi: 10.1023/A:1010767517079. Zbl0982.05044
- [7] I. Gutman and O.E. Polansky, Mathematical Concepts in Organic Chemistry ( Springer-Verlag, Berlin, 1986). Zbl0657.92024
- [8] M. Hoji, Z. Luo and E. Vumar, Wiener and vertex PI indices of Kronecker products of graphs, Discrete Appl. Math. 158 (2010) 1848-1855, doi: 10.1016/j.dam.2010.06.009. Zbl1208.05124
- [9] W. Imrich and S. Klavžar, Product graphs: Structure and Recognition ( John Wiley, New York, 2000). Zbl0963.05002
- [10] W. Imrich, S. Klavžar and D. F. Rall, Topics in Graph Theory: Graphs and Their Cartesian Product ( AK Peters Ltd., Wellesley, Massachusetts, 2008). Zbl1156.05001
- [11] P.V. Khadikar, S. Karmarkar and V.K. Agrawal, A novel PI index and its application to QSPR/QSAR studies, J. Chem. Inf. Comput. Sci. 41 (2001) 934-949, doi: 10.1021/ci0003092.
- [12] P.V. Khadikar, On a novel structural descriptor PI, Nat. Acad. Sci. Lett. 23 (2000) 113-118.
- [13] M.H. Khalifeh, H. Yousefi-Azari and A.R. Ashrafi, The hyper-Wiener index of graph operations, Comput. Math. Appl. 56 (2008) 1402-1407, doi: 10.1016/j.camwa.2008.03.003. Zbl1155.05316
- [14] M.H. Khalifeh, H. Yousefi-Azari and A.R. Ashrafi, Vertex and edge PI indices of cartesian product graphs, Discrete Appl. Math. 156 (2008) 1780-1789, doi: 10.1016/j.dam.2007.08.041. Zbl1152.05323
- [15] S. Klavžar, P. Zigert and I. Gutman, An algorithm for the calculation of the hyper-Wiener index of benzenoid hydrocarbons, Comput. Chem. 24 (2000) 229-233, doi: 10.1016/S0097-8485(99)00062-5. Zbl1034.92040
- [16] D.J. Klein, I. Lukovits and I. Gutman, On the definition of the hyper-Wiener index for cycle-containing structures, J. Chem. Inf. Comput. Sci. 35 (1995) 50-52, doi: 10.1021/ci00023a007.
- [17] W. Linert, F. Renz, K. Kleestorfer and I. Lukovits, An algorithm for the computation of the hyper-Winer index for the characterization and discrimination of branched acyclic molecules, Comput. Chem. 19 (1995) 395-401, doi: 10.1016/0097-8485(95)00048-W.
- [18] I. Lukovits, A Note on a formula for the hyper-Wiener index of some trees, J. Chem. Inf. Comput. Sci. 34 (1994) 1079-1081, doi: 10.1021/ci00021a007.
- [19] I. Lukovits, QSPR/QSAR Studies by Molecular Descriptors, (Nova, Huntington, M.V. Diudea (Ed.), 2001) p.31.
- [20] D.E. Needham, I.C. Wei and P.G. Seybold, Molecular modeling of the physical properties of alkanes, J. Amer. Chem. Soc. 110 (1988) 4186-4194, doi: 10.1021/ja00221a015.
- [21] K. Pattabiraman and P. Paulraja, Wiener index of the tensor product of a path and a cycle, Discuss. Math. Graph Theory 31 (2011) 737-751, doi: 10.7151/dmgt.1576. Zbl1255.05065
- [22] K. Pattabiraman and P. Paulraja, On some topological indices of the tensor products of graphs, Discrete Appl. Math. 160 (2012) 267-279, doi: 10.1016/j.dam.2011.10.020. Zbl1241.05121
- [23] K. Pattabiraman and P. Paulraja, Vertex and edge Padmakar-Ivan indices of the generalized hierarchical product of graphs, Discrete Appl. Math. 160 (2012) 1376-1384, doi: 10.1016/j.dam.2012.01.021. Zbl1242.05232
- [24] M. Randi'c, Novel molecular descriptor for structure-property studies, Chem. Phys. Lett. 211 (1993) 478-483, doi: 10.1016/0009-2614(93)87094-J.
- [25] R. Todeschini and V. Consonni, Handbook of Molecular Descriptors (Wiley-VCH, Weinheim, 2000).
- [26] H. Wiener, Structural determination of the paraffin boiling points, J. Amer. Chem. Soc. 69 (1947) 17-20, doi: 10.1021/ja01193a005.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.