Wiener index of the tensor product of a path and a cycle

K. Pattabiraman; P. Paulraja

Discussiones Mathematicae Graph Theory (2011)

  • Volume: 31, Issue: 4, page 737-751
  • ISSN: 2083-5892

Abstract

top
The Wiener index, denoted by W(G), of a connected graph G is the sum of all pairwise distances of vertices of the graph, that is, W ( G ) = ½ Σ u , v V ( G ) d ( u , v ) . In this paper, we obtain the Wiener index of the tensor product of a path and a cycle.

How to cite

top

K. Pattabiraman, and P. Paulraja. "Wiener index of the tensor product of a path and a cycle." Discussiones Mathematicae Graph Theory 31.4 (2011): 737-751. <http://eudml.org/doc/271031>.

@article{K2011,
abstract = {The Wiener index, denoted by W(G), of a connected graph G is the sum of all pairwise distances of vertices of the graph, that is, $W(G) = ½Σ_\{u,v ∈ V(G)\} d(u,v)$. In this paper, we obtain the Wiener index of the tensor product of a path and a cycle.},
author = {K. Pattabiraman, P. Paulraja},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {tensor product; Wiener index},
language = {eng},
number = {4},
pages = {737-751},
title = {Wiener index of the tensor product of a path and a cycle},
url = {http://eudml.org/doc/271031},
volume = {31},
year = {2011},
}

TY - JOUR
AU - K. Pattabiraman
AU - P. Paulraja
TI - Wiener index of the tensor product of a path and a cycle
JO - Discussiones Mathematicae Graph Theory
PY - 2011
VL - 31
IS - 4
SP - 737
EP - 751
AB - The Wiener index, denoted by W(G), of a connected graph G is the sum of all pairwise distances of vertices of the graph, that is, $W(G) = ½Σ_{u,v ∈ V(G)} d(u,v)$. In this paper, we obtain the Wiener index of the tensor product of a path and a cycle.
LA - eng
KW - tensor product; Wiener index
UR - http://eudml.org/doc/271031
ER -

References

top
  1. [1] R. Balakrishnan and K. Ranganathan, A Text Book of Graph Theory (Springer-Verlag, New York, 2000). Zbl0938.05001
  2. [2] R. Balakrishanan, N. Sridharan and K. Viswanathan Iyer, Wiener index of graphs with more than one cut vertex, Appl. Math. Lett. 21 (2008) 922-927, doi: 10.1016/j.aml.2007.10.003. Zbl1152.05322
  3. [3] Z. Du and B. Zhou, Minimum Wiener indices of trees and unicyclic graphs of given matching number, MATCH Commun. Math. Comput. Chem. 63 (2010) 101-112. Zbl1299.05083
  4. [4] Z. Du and B. Zhou, A note on Wiener indices of unicyclic graphs, Ars Combin. 93 (2009) 97-103. Zbl1224.05139
  5. [5] M. Fischermann, A. Hoffmann, D. Rautenbach and L. Volkmann, Wiener index versus maximum degree in trees, Discrete Appl. Math. 122 (2002) 127-137, doi: 10.1016/S0166-218X(01)00357-2. Zbl0993.05061
  6. [6] I. Gutman, S. Klavžar, Wiener number of vertex-weighted graphs and a chemical application, Discrete Appl. Math. 80 (1997) 73-81, doi: 10.1016/S0166-218X(97)00070-X. Zbl0889.05046
  7. [7] T.C. Hu, Optimum communication spanning trees, SIAM J. Comput. 3 (1974) 188-195, doi: 10.1137/0203015. Zbl0269.90010
  8. [8] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (John Wiley, New York, 2000). 
  9. [9] F. Jelen and E. Triesch, Superdominance order and distance of trees with bounded maximum degree, Discrete Appl. Math. 125 (2003) 225-233, doi: 10.1016/S0166-218X(02)00195-6. Zbl1009.05052
  10. [10] K. Pattabiraman and P. Paulraja, Wiener index of the tensor product of cycles, submitted. Zbl1255.05065
  11. [11] P. Paulraja and N. Varadarajan, Independent sets and matchings in tensor product of graphs, Ars Combin. 72 (2004) 263-276. Zbl1075.05069
  12. [12] B.E. Sagan, Y.-N. Yeh and P. Zhang, The Wiener polynomial of a graph, manuscript. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.