# Wiener index of the tensor product of a path and a cycle

Discussiones Mathematicae Graph Theory (2011)

- Volume: 31, Issue: 4, page 737-751
- ISSN: 2083-5892

## Access Full Article

top## Abstract

top## How to cite

topK. Pattabiraman, and P. Paulraja. "Wiener index of the tensor product of a path and a cycle." Discussiones Mathematicae Graph Theory 31.4 (2011): 737-751. <http://eudml.org/doc/271031>.

@article{K2011,

abstract = {The Wiener index, denoted by W(G), of a connected graph G is the sum of all pairwise distances of vertices of the graph, that is, $W(G) = ½Σ_\{u,v ∈ V(G)\} d(u,v)$. In this paper, we obtain the Wiener index of the tensor product of a path and a cycle.},

author = {K. Pattabiraman, P. Paulraja},

journal = {Discussiones Mathematicae Graph Theory},

keywords = {tensor product; Wiener index},

language = {eng},

number = {4},

pages = {737-751},

title = {Wiener index of the tensor product of a path and a cycle},

url = {http://eudml.org/doc/271031},

volume = {31},

year = {2011},

}

TY - JOUR

AU - K. Pattabiraman

AU - P. Paulraja

TI - Wiener index of the tensor product of a path and a cycle

JO - Discussiones Mathematicae Graph Theory

PY - 2011

VL - 31

IS - 4

SP - 737

EP - 751

AB - The Wiener index, denoted by W(G), of a connected graph G is the sum of all pairwise distances of vertices of the graph, that is, $W(G) = ½Σ_{u,v ∈ V(G)} d(u,v)$. In this paper, we obtain the Wiener index of the tensor product of a path and a cycle.

LA - eng

KW - tensor product; Wiener index

UR - http://eudml.org/doc/271031

ER -

## References

top- [1] R. Balakrishnan and K. Ranganathan, A Text Book of Graph Theory (Springer-Verlag, New York, 2000). Zbl0938.05001
- [2] R. Balakrishanan, N. Sridharan and K. Viswanathan Iyer, Wiener index of graphs with more than one cut vertex, Appl. Math. Lett. 21 (2008) 922-927, doi: 10.1016/j.aml.2007.10.003. Zbl1152.05322
- [3] Z. Du and B. Zhou, Minimum Wiener indices of trees and unicyclic graphs of given matching number, MATCH Commun. Math. Comput. Chem. 63 (2010) 101-112. Zbl1299.05083
- [4] Z. Du and B. Zhou, A note on Wiener indices of unicyclic graphs, Ars Combin. 93 (2009) 97-103. Zbl1224.05139
- [5] M. Fischermann, A. Hoffmann, D. Rautenbach and L. Volkmann, Wiener index versus maximum degree in trees, Discrete Appl. Math. 122 (2002) 127-137, doi: 10.1016/S0166-218X(01)00357-2. Zbl0993.05061
- [6] I. Gutman, S. Klavžar, Wiener number of vertex-weighted graphs and a chemical application, Discrete Appl. Math. 80 (1997) 73-81, doi: 10.1016/S0166-218X(97)00070-X. Zbl0889.05046
- [7] T.C. Hu, Optimum communication spanning trees, SIAM J. Comput. 3 (1974) 188-195, doi: 10.1137/0203015. Zbl0269.90010
- [8] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (John Wiley, New York, 2000).
- [9] F. Jelen and E. Triesch, Superdominance order and distance of trees with bounded maximum degree, Discrete Appl. Math. 125 (2003) 225-233, doi: 10.1016/S0166-218X(02)00195-6. Zbl1009.05052
- [10] K. Pattabiraman and P. Paulraja, Wiener index of the tensor product of cycles, submitted. Zbl1255.05065
- [11] P. Paulraja and N. Varadarajan, Independent sets and matchings in tensor product of graphs, Ars Combin. 72 (2004) 263-276. Zbl1075.05069
- [12] B.E. Sagan, Y.-N. Yeh and P. Zhang, The Wiener polynomial of a graph, manuscript.

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.