Harary Index of Product Graphs

K. Pattabiraman; P. Paulraja

Discussiones Mathematicae Graph Theory (2015)

  • Volume: 35, Issue: 1, page 17-33
  • ISSN: 2083-5892

Abstract

top
The Harary index is defined as the sum of reciprocals of distances between all pairs of vertices of a connected graph. In this paper, the exact formulae for the Harary indices of tensor product G × Km0,m1,...,mr−1 and the strong product G⊠Km0,m1,...,mr−1 , where Km0,m1,...,mr−1 is the complete multipartite graph with partite sets of sizes m0,m1, . . . ,mr−1 are obtained. Also upper bounds for the Harary indices of tensor and strong products of graphs are estabilished. Finally, the exact formula for the Harary index of the wreath product G ○ G′ is obtained.

How to cite

top

K. Pattabiraman, and P. Paulraja. "Harary Index of Product Graphs." Discussiones Mathematicae Graph Theory 35.1 (2015): 17-33. <http://eudml.org/doc/271231>.

@article{K2015,
abstract = {The Harary index is defined as the sum of reciprocals of distances between all pairs of vertices of a connected graph. In this paper, the exact formulae for the Harary indices of tensor product G × Km0,m1,...,mr−1 and the strong product G⊠Km0,m1,...,mr−1 , where Km0,m1,...,mr−1 is the complete multipartite graph with partite sets of sizes m0,m1, . . . ,mr−1 are obtained. Also upper bounds for the Harary indices of tensor and strong products of graphs are estabilished. Finally, the exact formula for the Harary index of the wreath product G ○ G′ is obtained.},
author = {K. Pattabiraman, P. Paulraja},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {tensor product; strong product; wreath product; Harary index},
language = {eng},
number = {1},
pages = {17-33},
title = {Harary Index of Product Graphs},
url = {http://eudml.org/doc/271231},
volume = {35},
year = {2015},
}

TY - JOUR
AU - K. Pattabiraman
AU - P. Paulraja
TI - Harary Index of Product Graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2015
VL - 35
IS - 1
SP - 17
EP - 33
AB - The Harary index is defined as the sum of reciprocals of distances between all pairs of vertices of a connected graph. In this paper, the exact formulae for the Harary indices of tensor product G × Km0,m1,...,mr−1 and the strong product G⊠Km0,m1,...,mr−1 , where Km0,m1,...,mr−1 is the complete multipartite graph with partite sets of sizes m0,m1, . . . ,mr−1 are obtained. Also upper bounds for the Harary indices of tensor and strong products of graphs are estabilished. Finally, the exact formula for the Harary index of the wreath product G ○ G′ is obtained.
LA - eng
KW - tensor product; strong product; wreath product; Harary index
UR - http://eudml.org/doc/271231
ER -

References

top
  1. [1] N. Alon and E. Lubetzky, Independent set in tensor graph powers, J. Graph Theory 54 (2007) 73-87. doi:10.1002/jgt.20194[Crossref] Zbl1108.05068
  2. [2] A.M. Assaf, Modified group divisible designs, Ars Combin. 29 (1990) 13-20. Zbl0702.05014
  3. [3] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Second Edition (Springer, New York, 2012). doi:10.1007/978-1-4614-4529-6[Crossref] Zbl1254.05001
  4. [4] B. Breˇsar, W. Imrich, S. Klavˇzar and B. Zmazek, Hypercubes as direct products, SIAM J. Discrete Math. 18 (2005) 778-786. doi:10.1137/S0895480103438358[Crossref] 
  5. [5] K.C. Das, B. Zhou and N. Trinajsti´c, Bounds on Harary index , J. Math. Chem. 46 (2009) 1377-1393. doi:10.1007/s10910-009-9522-8[Crossref] Zbl1194.92080
  6. [6] J. Devillers and A.T. Balaban, (Eds), Topological Indices and Related Descriptors in QSAR and QSPR (Gordon and Breach, Amsterdam, 1999). 
  7. [7] M.V. Diudea, Indices of reciprocal properties or Harary indices, J. Chem. Inf. Com- put. Sci. 37 (1997) 292-299. doi:10.1021/ci960037w[Crossref] 
  8. [8] L. Feng and A. Ili´c, Zagreb, Harary and hyper-Wiener indices of graphs with a given matching number , Appl. Math. Lett. 23 (2010) 943-948. doi:10.1016/j.aml.2010.04.017[WoS][Crossref] 
  9. [9] I. Gutman and O.E. Polansky, Mathematical Concepts in Organic Chemistry (Springer-Verlag, Berlin, 1986). doi:10.1007/978-3-642-70982-1[Crossref] Zbl0657.92024
  10. [10] I. Gutman, A property of the Wiener number and its modifications, Indian J. Chem. 36A (1997) 128-132. 
  11. [11] R. Hammack, W. Imrich and S. Klavˇzar, Handbook of Product Graphs (CRC Press, New York, 2011). Zbl1283.05001
  12. [12] M. Hoji, Z. Luo and E. Vumar, Wiener and vertex PI indices of Kronecker products of graphs, Discrete Appl. Math. 158 (2010) 1848-1855. doi:10.1016/j.dam.2010.06.009[Crossref][WoS] Zbl1208.05124
  13. [13] O. Ivanciu´c, T.S. Balaban and A.T. Balaban, Reciprocal distance matrix, related local vertex invariants and topological indices, J. Math. Chem. 12 (1993) 309-318. doi:10.1007/BF01164642[Crossref] 
  14. [14] M.H. Khalifeh, H. Youseri-Azari and A.R. Ashrafi, Vertex and edge PI indices of Cartesian product of graphs, Discrete Appl. Math. 156 (2008) 1780-1789. doi:10.1016/j.dam.2007.08.041[WoS][Crossref] Zbl1152.05323
  15. [15] B. Luˇci´c, A. Miliˇcevi´c, S. Nikoli´c and N. Trinajsti´c, Harary index-twelve years later , Croat. Chem. Acta 75 (2002) 847-868. 
  16. [16] I. Lukovits, Wiener-type graph invariants, in: M.V. Diudea (Ed.), QSPR/QSAR Studies by Molecular Descriptors (Nova Science Publishers, Huntington, New York, 2001). Zbl1032.05131
  17. [17] A. Mamut and E. Vumar, Vertex vulnerability parameters of Kronecker products of complete graphs, Inform. Process. Lett. 106 (2008) 258-262. doi:10.1016/j.ipl.2007.12.002[WoS][Crossref] Zbl1185.05093
  18. [18] D.E. Needham, I.C. Wei and P.G. Seybold, Molecular modeling of the physical prop- erties of alkanes, J. Amer. Chem. Soc. 110 (1988) 4186-4194. doi:10.1021/ja00221a015[Crossref] 
  19. [19] K. Pattabiraman and P. Paulraja, On some topological indices of the tensor product of graphs, Discrete Appl. Math. 160 (2012) 267-279. doi:10.1016/j.dam.2011.10.020[Crossref] Zbl1241.05121
  20. [20] K. Pattabiraman and P. Paulraja, Wiener and vertex PI indices of the strong product of graphs, Discuss. Math. Graph Theory 32 (2012) 749-769. doi:10.7151/dmgt.1647[Crossref] Zbl1291.05050
  21. [21] K. Pattabiraman and P. Paulraja, Wiener index of the tensor product of a path and a cycle, Discuss. Math. Graph Theory 31 (2011) 737-751. doi:10.7151/dmgt.1576[Crossref] Zbl1255.05065
  22. [22] D. Plavsi´c, S. Nikoli´c, N. Trinajsti´c and Z. Mihali´c, On the Harary index for the characterization of chemical graphs, J. Math. Chem. 12 (1993) 235-250.[Crossref] 
  23. [23] R. Todeschini and V. Consonni, Handbook of Molecular Descriptors (Wiley-VCH, Weinheim, 2000). 
  24. [24] N. Trinajsti´c, S. Nikoli´c, S.C. Basak and I. Lukovits, Distance indices and their hyper-counterparts: Intercorrelation and use in the structure-property modeling, SAR and QSAR in Environmental Research 12 (2001) 31-54. doi:10.1080/10629360108035370[Crossref] 
  25. [25] K. Xu and K.C. Das, On Harary index of graphs, Discrete. Appl. Math. 159 (2011) 1631-1640. doi:10.1016/j.dam.2011.06.003[Crossref] Zbl1228.05143
  26. [26] H. Yousefi-Azari, M.H. Khalifeh and A.R. Ashrafi, Calculating the edge Wiener and edge Szeged indices of graphs, J. Comput. Appl. Math. 235 (2011) 4866-4870. doi:10.1016/j.cam.2011.02.019 [WoS][Crossref] Zbl1222.05037
  27. [27] B. Zhou, Z.Du and N. Trinajsti´c, Harary index of landscape graphs, Int. J. Chem. Model. 1 (2008) 35-44. 
  28. [28] B. Zhou, X. Cai and N. Trinajsti´c, On the Harary index , J. Math. Chem. 44 (2008) 611-618. doi:10.1007/s10910-007-9339-2 [Crossref] Zbl1217.05216

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.