Lyapunov Functions for Weak Solutions of Reaction-Diffusion Equations with Discontinuous Interaction Functions and its Applications
Mark O. Gluzman; Nataliia V. Gorban; Pavlo O. Kasyanov
Nonautonomous Dynamical Systems (2015)
- Volume: 2, Issue: 1, page 1-11, electronic only
- ISSN: 2353-0626
Access Full Article
topAbstract
topHow to cite
topMark O. Gluzman, Nataliia V. Gorban, and Pavlo O. Kasyanov. "Lyapunov Functions for Weak Solutions of Reaction-Diffusion Equations with Discontinuous Interaction Functions and its Applications." Nonautonomous Dynamical Systems 2.1 (2015): 1-11, electronic only. <http://eudml.org/doc/270930>.
@article{MarkO2015,
abstract = {In this paper we investigate additional regularity properties for global and trajectory attractors of all globally defined weak solutions of semi-linear parabolic differential reaction-diffusion equations with discontinuous nonlinearities, when initial data uτ ∈ L2(Ω). The main contributions in this paper are: (i) sufficient conditions for the existence of a Lyapunov function for all weak solutions of autonomous differential reaction-diffusion equations with discontinuous and multivalued interaction functions; (ii) convergence results for all weak solutions in the strongest topologies; (iii) new structure and regularity properties for global and trajectory attractors. The obtained results allow investigating the long-time behavior of state functions for the following problems: (a) a model of combustion in porous media; (b) a model of conduction of electrical impulses in nerve axons; (c) a climate energy balance model; (d) a parabolic feedback control problem.},
author = {Mark O. Gluzman, Nataliia V. Gorban, Pavlo O. Kasyanov},
journal = {Nonautonomous Dynamical Systems},
keywords = {Lyapunov function; Regularity; Attractor; regularity; attractor},
language = {eng},
number = {1},
pages = {1-11, electronic only},
title = {Lyapunov Functions for Weak Solutions of Reaction-Diffusion Equations with Discontinuous Interaction Functions and its Applications},
url = {http://eudml.org/doc/270930},
volume = {2},
year = {2015},
}
TY - JOUR
AU - Mark O. Gluzman
AU - Nataliia V. Gorban
AU - Pavlo O. Kasyanov
TI - Lyapunov Functions for Weak Solutions of Reaction-Diffusion Equations with Discontinuous Interaction Functions and its Applications
JO - Nonautonomous Dynamical Systems
PY - 2015
VL - 2
IS - 1
SP - 1
EP - 11, electronic only
AB - In this paper we investigate additional regularity properties for global and trajectory attractors of all globally defined weak solutions of semi-linear parabolic differential reaction-diffusion equations with discontinuous nonlinearities, when initial data uτ ∈ L2(Ω). The main contributions in this paper are: (i) sufficient conditions for the existence of a Lyapunov function for all weak solutions of autonomous differential reaction-diffusion equations with discontinuous and multivalued interaction functions; (ii) convergence results for all weak solutions in the strongest topologies; (iii) new structure and regularity properties for global and trajectory attractors. The obtained results allow investigating the long-time behavior of state functions for the following problems: (a) a model of combustion in porous media; (b) a model of conduction of electrical impulses in nerve axons; (c) a climate energy balance model; (d) a parabolic feedback control problem.
LA - eng
KW - Lyapunov function; Regularity; Attractor; regularity; attractor
UR - http://eudml.org/doc/270930
ER -
References
top- [1] J.M. Arrieta, A. Rodrígues-Bernal, J. Valero, Dynamics of a reaction-diffusion equation with discontinuous nonlinearity, International Journal of Bifurcation and Chaos 16(2006), 2695–2984. Zbl1185.37161
- [2] Balibrea, F., Caraballo, T., Kloeden, P.E., Valero, J.: Recent developments in dynamical systems: three perspectives. International Journal of Bifurcation and Chaos (2010). DOI: 10.1142/S0218127410027246 [Crossref][WoS] Zbl1202.37003
- [3] M.I. Budyko, The effects of solar radiation variations on the climate of the Earth, Tellus 21(1969) 611–619. [Crossref]
- [4] J.M. Ball, Continuity properties and attractors of generalized semiflows and the Navier-Stokes equations, Journal of Nonlinear Science 7(1997) 475–502. Erratum, ibid 8:233,1998. Corrected version appears in ‘Mechanics: from Theory to Computation’, pages 447–474, Springer Verlag, 2000. [Crossref]
- [5] J.M. Ball, Global attractors for damped semilinear wave equations, DCDS 10(2004) 31–52. [Crossref] Zbl1056.37084
- [6] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei, Bucuresti, 1976. Zbl0328.47035
- [7] V.V. Chepyzhov, M.I. Vishik, Trajectory and Global Attractors of Three-Dimensional Navier–Stokes Systems, Mathematical Notes 71(2002) 177–193, doi: 10.1023/A:1014190629738. [Crossref] Zbl1130.37404
- [8] V.V. Chepyzhov, M.I. Vishik, Trajectory attractor for reaction-diffusion system with diffusion coeflcient vanishing in time, Discrete and Continuous Dynamical Systems – Series A. 27(2013) 1493–1509. Zbl1194.35072
- [9] V.V. Chepyzhov, Conti M., V. Pata, A minimal approach to the theory of global attractors, Discrete and Continuous Dynamical Systems. 32(2012) 2079–2088. Zbl1278.37033
- [10] F.H. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons, Inc., New York, 1983. Zbl0582.49001
- [11] H. D´iaz, J. D´iaz, On a stochastic parabolic PDE arising in climatology, Rev. R. Acad. Cien. Serie A Mat. 96(2002) 123–128.
- [12] J. D´iaz, J. Hern´andez, L. Tello, On the multiplicity of equilibrium solutions to a nonlinear diffusion equation on a manifold arising in climatology, J. Math. Anal. Appl. 216(1997) 593–613.
- [13] J. D´iaz, J. Hern´andez, L. Tello, Some results about multiplicity and bifurcation of stationary solutions of a reaction diffusion climatological model, Rev. R. Acad. Cien. Serie A. Mat. 96(3)(2002) 357–366.
- [14] J. D´iaz, L. Tello, Infinitely many stationary solutions for a simple climate model via a shooting method, Math. Meth. Appl. Sci. 25 (2002) 327–334. Zbl1181.35186
- [15] E. Feireisl, J. Norbury, Some existence and nonuniqueness theorems for solutions of parabolic equationswith discontinuous nonlinearities, Proc. Roy. Soc. Edinburgh A. 119(1–2)(1991) 1–17. Zbl0784.35117
- [16] H. Gajewski, K. Gröger, K. Zacharias, Nichtlineare operatorgleichungen und operatordifferentialgleichungen, Akademie- Verlag, Berlin, 1974 Zbl0289.47029
- [17] M.O. Gluzman, N.V. Gorban, P.O. Kasyanov, Lyapunov type functions for classes of autonomous parabolic feedback control problems and applications, Applied Mathematics Letters 39(2015) 19-21, doi: 10.1016 / j.aml.2014.08 .006 [Crossref][WoS] Zbl1318.35140
- [18] G.R. Goldstein, A. Miranville, A Cahn-Hilliard-Gurtin Model With Dynamic Boundary Conditions, Discrete & Continuous Dynamical Systems – Series S 6(2013) Zbl1277.35202
- [19] N.V. Gorban, O.V. Kapustyan, P.O. Kasyanov, Uniform trajectory attractor for non-autonomous reaction-diffusion equations with Caratheodory’s nonlinearity, Nonlinear Analysis, Theory, Methods and Applications 98(2014) 13–26, doi: 10.1016/j.na.2013.12.004. [Crossref] Zbl1286.35045
- [20] N.V. Gorban, P.O. Kasyanov, On regularity of all weak solutions and their attractors for reaction-diffusion inclusion in unbounded domai, Solid Mechanics and its Applications 211(2014) 205–220. Zbl1323.35081
- [21] N.V. Gorban, O.V. Kapustyan, P.O. Kasyanov, L.S. Paliichuk, On global attractors for autonomous damped wave equation with discontinuous nonlinearity, Solid Mechanics and its Applications 211(2014) 221–237. Zbl1327.35232
- [22] M. Efendiev, A. Miranville, S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in R3, Comptes Rendus de l’Academie des Sciences-Series I – Mathematics 330 (2000) 713–718 Zbl1151.35315
- [23] P. Kalita, G. Lukaszewicz, Global attractors for multivalued semiflows with weak continuity properties, Nonlinear Analysis: Theory, Methods & Applications, 101 (2014) 124–143. Zbl1292.76032
- [24] P. Kalita, G. Lukaszewicz, Attractors for Navier–Stokes flows with multivalued and nonmonotone subdifferential boundary conditions, Nonlinear Analysis: Real World Applications 19(2014) 75–88. [Crossref][WoS] Zbl06324810
- [25] O.V. Kapustyan, P.O. Kasyanov, J. Valero, M.Z. Zgurovsky, Structure of uniform global attractor for general non-autonomous reaction-diffusion system, Solid Mechanics and its Applications 211(2014) 163–180. Zbl1323.35084
- [26] O.V. Kapustyan, P.O. Kasyanov, J. Valero, Regular solutions and global attractors for reaction-diffusion systems without uniqueness, Communications on Pure and Applied Analysis 13(2014) 1891–1906, doi:10.3934/cpaa.2014.13.1891. [Crossref] Zbl1304.35119
- [27] O.V. Kapustyan, P.O. Kasyanov, J. Valero, Structure and regularity of the global attractor of a reaction-diffusion equation with non-smooth nonlinear term, Communications on Pure and Applied Analysis 34(2014) 4155–4182, doi:10.3934/dcds.2014.34.4155. [Crossref] Zbl1304.35118
- [28] P.O. Kasyanov, L. Toscano, N.V. Zadoianchuk, Regularity of Weak Solutions and Their Attractors for a Parabolic Feedback Control Problem, Set-Valued Var. Anal. 21(2013) 271-282, doi: 10.1007/s11228-013-0233-8. [Crossref] Zbl1327.35468
- [29] P.O. Kasyanov, Multivalued dynamics of solutions of an autonomous differential-operator inclusion with pseudomonotone nonlinearity, Cybernetics and Systems Analysis 47(2011) 800–811. [Crossref] Zbl1300.47084
- [30] P.O. Kasyanov, Multivalued dynamics of solutions of autonomous operator differential equations with pseudomonotone nonlinearity, Mathematical Notes 92(2012) 205–218. [Crossref][WoS] Zbl1272.47088
- [31] P.O. Kasyanov, L. Toscano, N.V. Zadoianchuk, Long-Time Behaviour of Solutions for Autonomous Evolution Hemivariational Inequality with Multidimensional ‘Reaction-Displacement’ Law, Abstract and Applied Analysis 2012(2012) 21 pages, doi:10.1155/2012/450984. [Crossref][WoS] Zbl1237.49015
- [32] V.S. Melnik, J. Valero, On attractors of multivalued semiflows and differential inclusions. Set Valued Anal. 6(1998) 83–111, doi:10.1023/A:1008608431399. [Crossref][WoS]
- [33] S. Mig´orski, On the existence of solutions for parabolic hemivariational inequalities. Journal of Computational and Applied Mathematics 129(2001), 77–87.
- [34] S. Mig´orski, A. Ochal, Optimal Control of Parabolic Hemivariational Inequalities, Journal of Global Optimization 17(2000) 285–300. [Crossref] Zbl0974.49009
- [35] F. Morillas, J. Valero, Attractors for reaction-diffusion equation in Rn with continuous nonlinearity. Asymptotic Analysis 44(2005), 111–130. Zbl1083.35022
- [36] M. Otani, H. Fujita, On existence of strong solutions for du dt (t)+@'1(u(t))−@'2(u(t)) ∋ f (t), Journal of the Faculty of Science, the University of Tokyo. Sect. 1 A, Mathematics. 24(3)(1977) 575–605. Zbl0386.47040
- [37] P.D. Panagiotopoulos, Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions. Birkhauser, Basel, 1985. Zbl0579.73014
- [38] G.R. Sell, Yu. You, Dynamics of evolutionary equations. Springer, New York 2002. Zbl1254.37002
- [39] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988. Zbl0662.35001
- [40] D. Terman, A free boundary problem arising from a bistable reaction–diffusion equation, Siam J.Math. Anal. 14(1983) 1107– 1129. [Crossref] Zbl0534.35085
- [41] D. Terman, A free boundary arising from a model for nerve conduction, J. Diff. Eqs. 58(3)(1985) 345–363. Zbl0652.35055
- [42] J. Valero, Attractors of Parabolic Equations Without Uniqueness, Journal of Dynamics and Differential Equations 13(2001) 711–744, doi:10.1023/A:1016642525800. [Crossref]
- [43] J. Valero, A.V. Kapustyan, On the connectedness and asymptotic behaviour of solutions of reaction–diffusion systems, Journal of Mathematical Analysis and Applications 2006, doi:10.1016/j.jmaa.2005.10.042. [Crossref] Zbl1169.35345
- [44] M.I. Vishik, S.V. Zelik, V.V. Chepyzhov, Strong Trajectory Attractor for Dissipative Reaction-Diffusion System, DocladyMathematics (2010), doi: 10.1134/S1064562410060086. [Crossref][WoS] Zbl1227.35084
- [45] N.V. Zadoianchuk, P.O. Kasyanov, Dynamics of solutions of a class of second-order autonomous evolution inclusions, Cybernetics and Systems Analysis 48(2012) 414–428. [Crossref] Zbl1306.34090
- [46] M.Z. Zgurovsky, P.O. Kasyanov, O.V. Kapustyan, J. Valero, N.V. Zadoianchuk, Evolution Inclusions and Variation Inequalities for Earth Data Processing III, Springer, Berlin, 2012, doi:10.1007/978-3-642-28512-7. [Crossref] Zbl1317.86003
- [47] M.Z. Zgurovsky, P.O. Kasyanov, Multivalued dynamics of solutions for autonomous operator differential equations in strongest topologies, Solid Mechanics and its Applications 211(2014) 149–162. Zbl1327.34116
- [48] M.Z. Zgurovsky, P.O. Kasyanov, N.V. Zadoianchuk, Long-time behavior of solutions for quasilinear hyperbolic hemivariational inequalities with application to piezoelectricity problem, Applied Mathematics Letters 25(2012) 1569–1574, doi: 10.1016/j.aml.2012.01.016. [WoS][Crossref] Zbl1250.49015
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.