Lyapunov Functions for Weak Solutions of Reaction-Diffusion Equations with Discontinuous Interaction Functions and its Applications

Mark O. Gluzman; Nataliia V. Gorban; Pavlo O. Kasyanov

Nonautonomous Dynamical Systems (2015)

  • Volume: 2, Issue: 1, page 1-11, electronic only
  • ISSN: 2353-0626

Abstract

top
In this paper we investigate additional regularity properties for global and trajectory attractors of all globally defined weak solutions of semi-linear parabolic differential reaction-diffusion equations with discontinuous nonlinearities, when initial data uτ ∈ L2(Ω). The main contributions in this paper are: (i) sufficient conditions for the existence of a Lyapunov function for all weak solutions of autonomous differential reaction-diffusion equations with discontinuous and multivalued interaction functions; (ii) convergence results for all weak solutions in the strongest topologies; (iii) new structure and regularity properties for global and trajectory attractors. The obtained results allow investigating the long-time behavior of state functions for the following problems: (a) a model of combustion in porous media; (b) a model of conduction of electrical impulses in nerve axons; (c) a climate energy balance model; (d) a parabolic feedback control problem.

How to cite

top

Mark O. Gluzman, Nataliia V. Gorban, and Pavlo O. Kasyanov. "Lyapunov Functions for Weak Solutions of Reaction-Diffusion Equations with Discontinuous Interaction Functions and its Applications." Nonautonomous Dynamical Systems 2.1 (2015): 1-11, electronic only. <http://eudml.org/doc/270930>.

@article{MarkO2015,
abstract = {In this paper we investigate additional regularity properties for global and trajectory attractors of all globally defined weak solutions of semi-linear parabolic differential reaction-diffusion equations with discontinuous nonlinearities, when initial data uτ ∈ L2(Ω). The main contributions in this paper are: (i) sufficient conditions for the existence of a Lyapunov function for all weak solutions of autonomous differential reaction-diffusion equations with discontinuous and multivalued interaction functions; (ii) convergence results for all weak solutions in the strongest topologies; (iii) new structure and regularity properties for global and trajectory attractors. The obtained results allow investigating the long-time behavior of state functions for the following problems: (a) a model of combustion in porous media; (b) a model of conduction of electrical impulses in nerve axons; (c) a climate energy balance model; (d) a parabolic feedback control problem.},
author = {Mark O. Gluzman, Nataliia V. Gorban, Pavlo O. Kasyanov},
journal = {Nonautonomous Dynamical Systems},
keywords = {Lyapunov function; Regularity; Attractor; regularity; attractor},
language = {eng},
number = {1},
pages = {1-11, electronic only},
title = {Lyapunov Functions for Weak Solutions of Reaction-Diffusion Equations with Discontinuous Interaction Functions and its Applications},
url = {http://eudml.org/doc/270930},
volume = {2},
year = {2015},
}

TY - JOUR
AU - Mark O. Gluzman
AU - Nataliia V. Gorban
AU - Pavlo O. Kasyanov
TI - Lyapunov Functions for Weak Solutions of Reaction-Diffusion Equations with Discontinuous Interaction Functions and its Applications
JO - Nonautonomous Dynamical Systems
PY - 2015
VL - 2
IS - 1
SP - 1
EP - 11, electronic only
AB - In this paper we investigate additional regularity properties for global and trajectory attractors of all globally defined weak solutions of semi-linear parabolic differential reaction-diffusion equations with discontinuous nonlinearities, when initial data uτ ∈ L2(Ω). The main contributions in this paper are: (i) sufficient conditions for the existence of a Lyapunov function for all weak solutions of autonomous differential reaction-diffusion equations with discontinuous and multivalued interaction functions; (ii) convergence results for all weak solutions in the strongest topologies; (iii) new structure and regularity properties for global and trajectory attractors. The obtained results allow investigating the long-time behavior of state functions for the following problems: (a) a model of combustion in porous media; (b) a model of conduction of electrical impulses in nerve axons; (c) a climate energy balance model; (d) a parabolic feedback control problem.
LA - eng
KW - Lyapunov function; Regularity; Attractor; regularity; attractor
UR - http://eudml.org/doc/270930
ER -

References

top
  1. [1] J.M. Arrieta, A. Rodrígues-Bernal, J. Valero, Dynamics of a reaction-diffusion equation with discontinuous nonlinearity, International Journal of Bifurcation and Chaos 16(2006), 2695–2984.  Zbl1185.37161
  2. [2] Balibrea, F., Caraballo, T., Kloeden, P.E., Valero, J.: Recent developments in dynamical systems: three perspectives. International Journal of Bifurcation and Chaos (2010). DOI: 10.1142/S0218127410027246 [Crossref][WoS] Zbl1202.37003
  3. [3] M.I. Budyko, The effects of solar radiation variations on the climate of the Earth, Tellus 21(1969) 611–619. [Crossref] 
  4. [4] J.M. Ball, Continuity properties and attractors of generalized semiflows and the Navier-Stokes equations, Journal of Nonlinear Science 7(1997) 475–502. Erratum, ibid 8:233,1998. Corrected version appears in ‘Mechanics: from Theory to Computation’, pages 447–474, Springer Verlag, 2000. [Crossref] 
  5. [5] J.M. Ball, Global attractors for damped semilinear wave equations, DCDS 10(2004) 31–52. [Crossref] Zbl1056.37084
  6. [6] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei, Bucuresti, 1976.  Zbl0328.47035
  7. [7] V.V. Chepyzhov, M.I. Vishik, Trajectory and Global Attractors of Three-Dimensional Navier–Stokes Systems, Mathematical Notes 71(2002) 177–193, doi: 10.1023/A:1014190629738. [Crossref] Zbl1130.37404
  8. [8] V.V. Chepyzhov, M.I. Vishik, Trajectory attractor for reaction-diffusion system with diffusion coeflcient vanishing in time, Discrete and Continuous Dynamical Systems – Series A. 27(2013) 1493–1509.  Zbl1194.35072
  9. [9] V.V. Chepyzhov, Conti M., V. Pata, A minimal approach to the theory of global attractors, Discrete and Continuous Dynamical Systems. 32(2012) 2079–2088.  Zbl1278.37033
  10. [10] F.H. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons, Inc., New York, 1983.  Zbl0582.49001
  11. [11] H. D´iaz, J. D´iaz, On a stochastic parabolic PDE arising in climatology, Rev. R. Acad. Cien. Serie A Mat. 96(2002) 123–128.  
  12. [12] J. D´iaz, J. Hern´andez, L. Tello, On the multiplicity of equilibrium solutions to a nonlinear diffusion equation on a manifold arising in climatology, J. Math. Anal. Appl. 216(1997) 593–613.  
  13. [13] J. D´iaz, J. Hern´andez, L. Tello, Some results about multiplicity and bifurcation of stationary solutions of a reaction diffusion climatological model, Rev. R. Acad. Cien. Serie A. Mat. 96(3)(2002) 357–366.  
  14. [14] J. D´iaz, L. Tello, Infinitely many stationary solutions for a simple climate model via a shooting method, Math. Meth. Appl. Sci. 25 (2002) 327–334.  Zbl1181.35186
  15. [15] E. Feireisl, J. Norbury, Some existence and nonuniqueness theorems for solutions of parabolic equationswith discontinuous nonlinearities, Proc. Roy. Soc. Edinburgh A. 119(1–2)(1991) 1–17.  Zbl0784.35117
  16. [16] H. Gajewski, K. Gröger, K. Zacharias, Nichtlineare operatorgleichungen und operatordifferentialgleichungen, Akademie- Verlag, Berlin, 1974  Zbl0289.47029
  17. [17] M.O. Gluzman, N.V. Gorban, P.O. Kasyanov, Lyapunov type functions for classes of autonomous parabolic feedback control problems and applications, Applied Mathematics Letters 39(2015) 19-21, doi: 10.1016 / j.aml.2014.08 .006 [Crossref][WoS] Zbl1318.35140
  18. [18] G.R. Goldstein, A. Miranville, A Cahn-Hilliard-Gurtin Model With Dynamic Boundary Conditions, Discrete & Continuous Dynamical Systems – Series S 6(2013)  Zbl1277.35202
  19. [19] N.V. Gorban, O.V. Kapustyan, P.O. Kasyanov, Uniform trajectory attractor for non-autonomous reaction-diffusion equations with Caratheodory’s nonlinearity, Nonlinear Analysis, Theory, Methods and Applications 98(2014) 13–26, doi: 10.1016/j.na.2013.12.004. [Crossref] Zbl1286.35045
  20. [20] N.V. Gorban, P.O. Kasyanov, On regularity of all weak solutions and their attractors for reaction-diffusion inclusion in unbounded domai, Solid Mechanics and its Applications 211(2014) 205–220.  Zbl1323.35081
  21. [21] N.V. Gorban, O.V. Kapustyan, P.O. Kasyanov, L.S. Paliichuk, On global attractors for autonomous damped wave equation with discontinuous nonlinearity, Solid Mechanics and its Applications 211(2014) 221–237.  Zbl1327.35232
  22. [22] M. Efendiev, A. Miranville, S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in R3, Comptes Rendus de l’Academie des Sciences-Series I – Mathematics 330 (2000) 713–718  Zbl1151.35315
  23. [23] P. Kalita, G. Lukaszewicz, Global attractors for multivalued semiflows with weak continuity properties, Nonlinear Analysis: Theory, Methods & Applications, 101 (2014) 124–143.  Zbl1292.76032
  24. [24] P. Kalita, G. Lukaszewicz, Attractors for Navier–Stokes flows with multivalued and nonmonotone subdifferential boundary conditions, Nonlinear Analysis: Real World Applications 19(2014) 75–88. [Crossref][WoS] Zbl06324810
  25. [25] O.V. Kapustyan, P.O. Kasyanov, J. Valero, M.Z. Zgurovsky, Structure of uniform global attractor for general non-autonomous reaction-diffusion system, Solid Mechanics and its Applications 211(2014) 163–180.  Zbl1323.35084
  26. [26] O.V. Kapustyan, P.O. Kasyanov, J. Valero, Regular solutions and global attractors for reaction-diffusion systems without uniqueness, Communications on Pure and Applied Analysis 13(2014) 1891–1906, doi:10.3934/cpaa.2014.13.1891. [Crossref] Zbl1304.35119
  27. [27] O.V. Kapustyan, P.O. Kasyanov, J. Valero, Structure and regularity of the global attractor of a reaction-diffusion equation with non-smooth nonlinear term, Communications on Pure and Applied Analysis 34(2014) 4155–4182, doi:10.3934/dcds.2014.34.4155. [Crossref] Zbl1304.35118
  28. [28] P.O. Kasyanov, L. Toscano, N.V. Zadoianchuk, Regularity of Weak Solutions and Their Attractors for a Parabolic Feedback Control Problem, Set-Valued Var. Anal. 21(2013) 271-282, doi: 10.1007/s11228-013-0233-8. [Crossref] Zbl1327.35468
  29. [29] P.O. Kasyanov, Multivalued dynamics of solutions of an autonomous differential-operator inclusion with pseudomonotone nonlinearity, Cybernetics and Systems Analysis 47(2011) 800–811. [Crossref] Zbl1300.47084
  30. [30] P.O. Kasyanov, Multivalued dynamics of solutions of autonomous operator differential equations with pseudomonotone nonlinearity, Mathematical Notes 92(2012) 205–218. [Crossref][WoS] Zbl1272.47088
  31. [31] P.O. Kasyanov, L. Toscano, N.V. Zadoianchuk, Long-Time Behaviour of Solutions for Autonomous Evolution Hemivariational Inequality with Multidimensional ‘Reaction-Displacement’ Law, Abstract and Applied Analysis 2012(2012) 21 pages, doi:10.1155/2012/450984. [Crossref][WoS] Zbl1237.49015
  32. [32] V.S. Melnik, J. Valero, On attractors of multivalued semiflows and differential inclusions. Set Valued Anal. 6(1998) 83–111, doi:10.1023/A:1008608431399. [Crossref][WoS] 
  33. [33] S. Mig´orski, On the existence of solutions for parabolic hemivariational inequalities. Journal of Computational and Applied Mathematics 129(2001), 77–87.  
  34. [34] S. Mig´orski, A. Ochal, Optimal Control of Parabolic Hemivariational Inequalities, Journal of Global Optimization 17(2000) 285–300. [Crossref] Zbl0974.49009
  35. [35] F. Morillas, J. Valero, Attractors for reaction-diffusion equation in Rn with continuous nonlinearity. Asymptotic Analysis 44(2005), 111–130.  Zbl1083.35022
  36. [36] M. Otani, H. Fujita, On existence of strong solutions for du dt (t)+@'1(u(t))−@'2(u(t)) ∋ f (t), Journal of the Faculty of Science, the University of Tokyo. Sect. 1 A, Mathematics. 24(3)(1977) 575–605.  Zbl0386.47040
  37. [37] P.D. Panagiotopoulos, Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions. Birkhauser, Basel, 1985.  Zbl0579.73014
  38. [38] G.R. Sell, Yu. You, Dynamics of evolutionary equations. Springer, New York 2002.  Zbl1254.37002
  39. [39] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988.  Zbl0662.35001
  40. [40] D. Terman, A free boundary problem arising from a bistable reaction–diffusion equation, Siam J.Math. Anal. 14(1983) 1107– 1129. [Crossref] Zbl0534.35085
  41. [41] D. Terman, A free boundary arising from a model for nerve conduction, J. Diff. Eqs. 58(3)(1985) 345–363.  Zbl0652.35055
  42. [42] J. Valero, Attractors of Parabolic Equations Without Uniqueness, Journal of Dynamics and Differential Equations 13(2001) 711–744, doi:10.1023/A:1016642525800. [Crossref] 
  43. [43] J. Valero, A.V. Kapustyan, On the connectedness and asymptotic behaviour of solutions of reaction–diffusion systems, Journal of Mathematical Analysis and Applications 2006, doi:10.1016/j.jmaa.2005.10.042. [Crossref] Zbl1169.35345
  44. [44] M.I. Vishik, S.V. Zelik, V.V. Chepyzhov, Strong Trajectory Attractor for Dissipative Reaction-Diffusion System, DocladyMathematics (2010), doi: 10.1134/S1064562410060086. [Crossref][WoS] Zbl1227.35084
  45. [45] N.V. Zadoianchuk, P.O. Kasyanov, Dynamics of solutions of a class of second-order autonomous evolution inclusions, Cybernetics and Systems Analysis 48(2012) 414–428. [Crossref] Zbl1306.34090
  46. [46] M.Z. Zgurovsky, P.O. Kasyanov, O.V. Kapustyan, J. Valero, N.V. Zadoianchuk, Evolution Inclusions and Variation Inequalities for Earth Data Processing III, Springer, Berlin, 2012, doi:10.1007/978-3-642-28512-7. [Crossref] Zbl1317.86003
  47. [47] M.Z. Zgurovsky, P.O. Kasyanov, Multivalued dynamics of solutions for autonomous operator differential equations in strongest topologies, Solid Mechanics and its Applications 211(2014) 149–162.  Zbl1327.34116
  48. [48] M.Z. Zgurovsky, P.O. Kasyanov, N.V. Zadoianchuk, Long-time behavior of solutions for quasilinear hyperbolic hemivariational inequalities with application to piezoelectricity problem, Applied Mathematics Letters 25(2012) 1569–1574, doi: 10.1016/j.aml.2012.01.016. [WoS][Crossref] Zbl1250.49015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.