Stability and Continuity of Functions of Least Gradient

H. Hakkarainen; R. Korte; P. Lahti; N. Shanmugalingam

Analysis and Geometry in Metric Spaces (2015)

  • Volume: 3, Issue: 1, page 123-139, electronic only
  • ISSN: 2299-3274

Abstract

top
In this note we prove that on metric measure spaces, functions of least gradient, as well as local minimizers of the area functional (after modification on a set of measure zero) are continuous everywhere outside their jump sets. As a tool, we develop some stability properties of sequences of least gradient functions. We also apply these tools to prove a maximum principle for functions of least gradient that arise as solutions to a Dirichlet problem.

How to cite

top

H. Hakkarainen, et al. "Stability and Continuity of Functions of Least Gradient." Analysis and Geometry in Metric Spaces 3.1 (2015): 123-139, electronic only. <http://eudml.org/doc/271003>.

@article{H2015,
abstract = {In this note we prove that on metric measure spaces, functions of least gradient, as well as local minimizers of the area functional (after modification on a set of measure zero) are continuous everywhere outside their jump sets. As a tool, we develop some stability properties of sequences of least gradient functions. We also apply these tools to prove a maximum principle for functions of least gradient that arise as solutions to a Dirichlet problem.},
author = {H. Hakkarainen, R. Korte, P. Lahti, N. Shanmugalingam},
journal = {Analysis and Geometry in Metric Spaces},
keywords = {least gradient; BV; metric measure spac; approximate continuity; continuity; stability; jump set; Dirichlet problem; minimal surface; BV; metric measure space},
language = {eng},
number = {1},
pages = {123-139, electronic only},
title = {Stability and Continuity of Functions of Least Gradient},
url = {http://eudml.org/doc/271003},
volume = {3},
year = {2015},
}

TY - JOUR
AU - H. Hakkarainen
AU - R. Korte
AU - P. Lahti
AU - N. Shanmugalingam
TI - Stability and Continuity of Functions of Least Gradient
JO - Analysis and Geometry in Metric Spaces
PY - 2015
VL - 3
IS - 1
SP - 123
EP - 139, electronic only
AB - In this note we prove that on metric measure spaces, functions of least gradient, as well as local minimizers of the area functional (after modification on a set of measure zero) are continuous everywhere outside their jump sets. As a tool, we develop some stability properties of sequences of least gradient functions. We also apply these tools to prove a maximum principle for functions of least gradient that arise as solutions to a Dirichlet problem.
LA - eng
KW - least gradient; BV; metric measure spac; approximate continuity; continuity; stability; jump set; Dirichlet problem; minimal surface; BV; metric measure space
UR - http://eudml.org/doc/271003
ER -

References

top
  1. [1] F. J. Almgren, Jr., Almgren’s big regularity paper, Q-valued functions minimizing Dirichlet’s integral and the regularity of area-minimizing rectifiable currents up to codimension 2. With a preface by Jean E. Taylor and Vladimir Scheffer. World Scientific Monograph Series in Mathematics, 1. World Scientific Publishing Co., Inc., River Edge, NJ, 2000. xvi+955 pp.  Zbl0985.49001
  2. [2] L. Ambrosio, Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces, Adv. Math. 159 (2001), no. 1, 51–67.  Zbl1002.28004
  3. [3] L. Ambrosio, Fine properties of sets of finite perimeter in doubling metric measure spaces, Calculus of variations, nonsmooth analysis and related topics. Set-Valued Anal. 10 (2002), no. 2-3, 111–128. [Crossref] Zbl1037.28002
  4. [4] L. Ambrosio and S. Di Marino, Equivalent definitions of BV space and of total variation on metric measure spaces, J. Funct. Anal. 266 (2014), no. 7, 4150–4188. [WoS] Zbl1302.26012
  5. [5] L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation and free discontinuity problems,OxfordMathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000.  Zbl0957.49001
  6. [6] L. Ambrosio, M. Miranda, Jr., and D. Pallara, Special functions of bounded variation in doubling metric measure spaces, Calculus of variations: topics from the mathematical heritage of E. De Giorgi, 1–45, Quad. Mat., 14, Dept. Math., Seconda Univ. Napoli, Caserta, 2004.  Zbl1089.49039
  7. [7] L. Ambrosio, A. Pinamonti, and G. Speight, Tensorization of Cheeger energies, the space H1,1 and the area formula for graphs, preprint 2014. [WoS] Zbl1345.46025
  8. [8] A. Björn and J. Björn, Nonlinear potential theory on metric spaces, EMS Tracts in Mathematics, 17. European Mathematical Society (EMS), Zürich, 2011. xii+403 pp. [WoS] Zbl1231.31001
  9. [9] E. Bombieri, E. De Giorgi, and E. Giusti, Minimal cones and the Bernstein problem, Invent. Math. 7 (1969), 243–268.  Zbl0183.25901
  10. [10] C. Camfield, Comparison of BV norms in weighted Euclidean spaces and metric measure spaces, Thesis (Ph.D.)–University of Cincinnati (2008), 141 pp.  Zbl1234.26026
  11. [11] J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999), no. 3, 428–517. [Crossref] Zbl0942.58018
  12. [12] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions Studies in AdvancedMathematics series, CRC Press, Boca Raton, 1992.  
  13. [13] E. Giusti,Minimal surfaces and functions of bounded variation, Monographs inMathematics, 80. Birkhäuser Verlag, Basel, 1984. xii+240 pp.  
  14. [14] P. Hajłasz, Sobolev spaces on metric-measure spaces, Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002), 173–218, Contemp. Math., 338, Amer. Math. Soc., Providence, RI, 2003.  Zbl1048.46033
  15. [15] H. Hakkarainen, J. Kinnunen, and P. Lahti, Regularity of minimizers of the area functional in metric spaces, Adv. Calc. Var. 8 (2015), no. 1, 55–68. [WoS] Zbl1305.49069
  16. [16] H. Hakkarainen, J. Kinnunen, P. Lahti, and P. Lehtelä, Relaxation and integral representation for functionals of linear growth on metric measure spaces, submitted.  
  17. [17] J. Heinonen, Lectures on analysis on metric spaces, Universitext. Springer-Verlag, New York, 2001. x+140 pp.  Zbl0985.46008
  18. [18] J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear potential theory of degenerate elliptic equations, Dover Publications, Inc., Mineola, NY, 2006. xii+404 pp.  Zbl1115.31001
  19. [19] J. Kinnunen and N. Shanmugalingam, Regularity of quasi-minimizers on metric spaces, Manuscripta Math. 105 (2001), 401–423. [Crossref] Zbl1006.49027
  20. [20] J. Kinnunen, R. Korte, N. Shanmugalingam, and H. Tuominen, The DeGiorgi measure and an obstacle problem related to minimal surfaces in metric spaces, J. Math. Pures Appl. 93 (2010), 599–622. [Crossref][WoS] Zbl1211.49055
  21. [21] J. Kinnunen, R. Korte, A. Lorent, and N. Shanmugalingam, Regularity of sets with quasiminimal boundary surfaces in metric spaces, J. Geom. Anal. 23 (2013), 1607–1640. [WoS][Crossref] Zbl1311.49116
  22. [22] J. Kinnunen, R. Korte, N. Shanmugalingam, and H. Tuominen, Lebesgue points and capacities via the boxing inequality in metric spaces, Indiana Univ. Math. J. 57 (2008), no. 1, 401–430. [WoS] Zbl1146.46018
  23. [23] J. Kinnunen, R. Korte, N. Shanmugalingam, and H. Tuominen, Pointwise properties of functions of bounded variation on metric spaces, Rev. Mat. Complut. 27 (2014), no. 1, 41–67. [Crossref][WoS] Zbl1295.26012
  24. [24] F. Maggi, Sets of finite perimeter and geometric variational problems, An introduction to geometric measure theory. Cambridge Studies in Advanced Mathematics, 135. Cambridge University Press, Cambridge, 2012. xx+454 pp. [WoS] Zbl1255.49074
  25. [25] U. Massari and M. Miranda, Sr., Minimal surfaces of codimension one, North-Holland Mathematics Studies, 91. Notas de Matemática [Mathematical Notes], 95, North-Holland Publishing Co., Amsterdam, 1984. xiii+243 pp.  
  26. [26] M. Miranda, Sr., Comportamento delle successioni convergenti di frontiere minimali, Rend. Sem. Mat. Univ. Padova, 38 (1967), 238–257.  Zbl0154.37102
  27. [27] M. Miranda, Jr., Functions of bounded variation on “good” metric spaces, J.Math. Pures Appl. (9) 82 (2003), no. 8, 975–1004. [Crossref] Zbl1109.46030
  28. [28] H. Parks, Explicit determination of area minimizing hypersurfaces, Duke Math. J. 44 (1977), no. 3, 519–534. [Crossref] Zbl0385.49026
  29. [29] H. Parks, Explicit determination of area minimizing hypersurfaces. II, Mem. Amer. Math. Soc. 60 (1986), no. 342, iv+90 pp.  Zbl0644.53007
  30. [30] E. R. Reifenberg, Solution of the Plateau Problem for m-dimensional surfaces of varying topological type, Acta Math. 104 (1960), 1–92. [Crossref] Zbl0099.08503
  31. [31] N. Shanmugalingam, Newtonian spaces: An extension of Sobolev spaces to metric measure spaces, Rev.Mat. Iberoamericana 16 (2000), no. 2, 243–279.  Zbl0974.46038
  32. [32] J. Simons, Minimal cones, Plateau’s problem, and the Bernstein conjecture, Proc. Nat. Acad. Sci. U.S.A. 58 (1967), 410–411. [Crossref] Zbl0168.09903
  33. [33] J. Simons, Minimal varieties in riemannian manifolds, Ann. of Math. (2) 88 (1968), 62–105.  Zbl0181.49702
  34. [34] E. Soultanis, Homotopy classes of Newtonian spaces, preprint http://lanl.arxiv.org/pdf/1309.6472.pdf.  
  35. [35] P. Sternberg, G. Williams, and W. P. Ziemer, Existence, uniqueness, and regularity for functions of least gradient, J. Reine Angew. Math. 430 (1992), 35–60.  Zbl0756.49021
  36. [36] W. P. Ziemer, Weakly differentiable functions. Sobolev spaces and functions of bounded variation Graduate Texts in Mathematics, 120. Springer-Verlag, New York, 1989.  Zbl0692.46022
  37. [37] W. P. Ziemer, Functions of least gradient and BV functions, Nonlinear analysis, function spaces and applications, Vol. 6 (Prague, 1998), 270–312, Acad. Sci. Czech Repub., Prague, 1999.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.