Functions of least gradient and BV functions
- Nonlinear Analysis, Function Spaces and Applications, Publisher: Czech Academy of Sciences, Mathematical Institute(Praha), page 270-312
Access Full Article
topHow to cite
topZiemer, William P.. "Functions of least gradient and BV functions." Nonlinear Analysis, Function Spaces and Applications. Praha: Czech Academy of Sciences, Mathematical Institute, 1999. 270-312. <http://eudml.org/doc/221427>.
@inProceedings{Ziemer1999,
author = {Ziemer, William P.},
booktitle = {Nonlinear Analysis, Function Spaces and Applications},
keywords = {Spring school; Proceedings; Nonlinear analysis; Function spaces; Prague (Czech Republic)},
location = {Praha},
pages = {270-312},
publisher = {Czech Academy of Sciences, Mathematical Institute},
title = {Functions of least gradient and BV functions},
url = {http://eudml.org/doc/221427},
year = {1999},
}
TY - CLSWK
AU - Ziemer, William P.
TI - Functions of least gradient and BV functions
T2 - Nonlinear Analysis, Function Spaces and Applications
PY - 1999
CY - Praha
PB - Czech Academy of Sciences, Mathematical Institute
SP - 270
EP - 312
KW - Spring school; Proceedings; Nonlinear analysis; Function spaces; Prague (Czech Republic)
UR - http://eudml.org/doc/221427
ER -
References
top- Adams D. R., Hedberg L. I., Function spaces and potential theory, Springer-Verlag, Berlin 1996. (1996) MR1411441
- Bagby T., Quasi topologies and rational approximation, J. Funct. Anal. 10 (1972), 259–268. (1972) Zbl0266.30024MR0355058
- Bombieri E., Giorgi E. De, Giusti E., Minimal cones and the Bernstein problem, Invent. Math. 7 (1969), 255–267. (1969) Zbl0183.25901MR0250205
- Brezis H., Kinderlehrer D., The smoothness of solutions to nonlinear variational inequalities, Indiana Univ. Math. J. 23 (1974), 831–844. (1974) Zbl0278.49011MR0361436
- Federer H., Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418–491. (1959) Zbl0089.38402MR0110078
- Federer H., Geometric measure theory, Springer-Verlag, New York 1969. (1969) Zbl0176.00801MR0257325
- Fleming W. H., Rishel R., An integral formula for total gradient variation, Arch. Math. 11 (1960), 218–222. (1960) Zbl0094.26301MR0114892
- Gariepy R. F., Ziemer W. P., Modern real analysis, PWS Publishing Co., 1994. (1994)
- Gilbarg D., Trudinger N., Elliptic partial differential equations of second order, Springer-Verlag, Second ed., New York 1983. (1983) Zbl0562.35001MR0737190
- Giusti E., Boundary behavior of nonparametric minimal surfaces, Indiana Univ. Math. J. 22 (1977), 435–444. (1977) MR0305253
- Giusti E., Minimal surfaces and functions of bounded variation, Birkhäuser, 1985. (1985) MR0775682
- Gonzalez E., Massari U., Tamanini I., Minimal boundaries enclosing a given volume, Manuscripta Math. 34 (1981), 381–395. (1981) Zbl0481.49035MR0620458
- Gonzalez E., Massari U., Tamanini I., On the regularity of sets minimizing perimeter with a volume constraint, Indiana Univ. Math. J. 32 (1983), 25–37. (1983) MR0684753
- Greenberg J. M., Harper J. R., Algebraic topology, Benjamin-Cummings Press, 1981. (1981) Zbl0498.55001
- Grüter M., Boundary regularity for solutions of a partitioning problem, Arch. Rational Mech. Anal. 97 (1987), 261–270. (1987) Zbl0613.49029MR0862549
- Hardt R., Uniqueness of nonparametric area minimizing currents, Indiana Univ. Math. J. 26 (1977), 65–71. (1977) Zbl0333.49043MR0451154
- Havin V. P., Approximation in the mean by analytic functions, Soviet Math. Dokl. 9 (1968), 245–248. (1968)
- Ilmanen T., Sternberg P., Ziemer W., Equilibrium solutions to generalized motion by mean curvature, Accepted by J. Geom. Anal. Zbl0941.35028MR1731065
- Kohn R. V., Strang G., The constrained least gradient problem, Non-classical Continuum Mechanics. R. Knops and A. Lacy (eds.), Cambridge Univ. Press, 1987, 226–243. (1987) Zbl0668.73060MR0926504
- Laurence P., Stredulinsky E. W., On quasiconvex equimeasurable rearrangement, a counterexample and an example, J. Reine Angew. Math. 447 (1994), 63–81. (1994) Zbl0848.35003MR1263169
- Massari U., Miranda M., Minimal surfaces of codimension one, Mathematics Studies 91, North Holland, Amsterdam 1984. (1984) Zbl0565.49030MR0795963
- Miranda M., Sul minimo dell’integrale del gradiente di una funzione, Ann. Scuola Norm. Sup. Pisa 19 (1965), 627–656. (1965) MR0188839
- Moschen M. P., Principio di massimo forte per le frontiere di misura minima, Ann. Univ. Ferrara Sez. VII, Sc. Mat. 23 (1977), 165–168. (1977) Zbl0384.49030MR0482508
- Parks H., Explicit determination of area minimizing hypersurfaces, Duke Math. J. 44 (1977), 519–534. (1977) Zbl0385.49026MR0458304
- Parks H., Explicit determination of area minimizing hypersurfaces, II, Mem. Amer. Math. Soc. 342 (1986). (1986) Zbl0644.53007MR0831890
- Parks H., Ziemer W., Jacobi fields and functions of least gradient, Ann. Scuola Norm. Sup. Pisa XI (1984), 505–527. (1984) MR0808421
- Simon L., Lectures on geometric measure theory, Proc. Centre Math. Analysis, ANU, Canberra, 3(1983). (1983) Zbl0546.49019MR0756417
- Simon L., A strict maximum principle for area minimizing hypersurfaces, J. Differential Geom. 26 (1987), 327–335. (1987) Zbl0625.53052MR0906394
- Sternberg P., Williams G., Ziemer W., regularity of constrained area-minimizing hypersurfaces, J. Differential Equations 94 (1991), 83–94. (1991) MR1133542
- Sternberg P., Williams G., Ziemer W., Existence, uniqueness, and regularity for functions of least gradient, J. Reine Angew. Math. 430 (1992), 35–60. (1992) Zbl0756.49021MR1172906
- Sternberg P., Williams G., Ziemer W., The constrained least gradient problem in , Trans. Amer. Math. Soc. 339 (1993), 403–433. (1993) MR1126213
- Sternberg P., Ziemer W., The Dirchlet problem for functions of least gradient, Invited paper to celebrate James Serrin’s birthday. IMA Volumes in Math. and Appl. 47 (1993), 197–214. (1993) MR1246349
- Stredulinsky E., Ziemer W., Area minimizing sets subject to a volume constraint in a convex set, Accepted by J. Geom. Anal. Zbl0940.49025MR1669207
- Swanson D., Ziemer W., Sobolev functions whose inner trace at the boundary is zero, Accepted by Ark. Mat. Zbl1021.46027MR1714762
- Tamanini I., Boundaries of Caccioppoli sets with Hölder-continuous normal vector, J. Reine Angew. Math. 334 (1982), 27–39. (1982) Zbl0479.49028MR0667448
- Williams G., Regularity for solutions of the minimal surface equation with continuous boundary values, Ann. Inst. H. Poincaré Anal. Non Linéaire 3 (1986), 411–429. (1986) Zbl0627.49020MR0870863
- Ziemer W. P., Weakly differentiable functions, Springer-Verlag, GTM Series, 120, Berlin 1989. (1989) Zbl0692.46022MR1014685
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.