Monotone Valuations on the Space of Convex Functions
Analysis and Geometry in Metric Spaces (2015)
- Volume: 3, Issue: 1, page 167-211, electronic only
- ISSN: 2299-3274
Access Full Article
topAbstract
topHow to cite
topL. Cavallina, and A. Colesanti. "Monotone Valuations on the Space of Convex Functions." Analysis and Geometry in Metric Spaces 3.1 (2015): 167-211, electronic only. <http://eudml.org/doc/271207>.
@article{L2015,
abstract = {We consider the space Cn of convex functions u defined in Rn with values in R ∪ \{∞\}, which are lower semi-continuous and such that lim|x| \} ∞ u(x) = ∞. We study the valuations defined on Cn which are invariant under the composition with rigid motions, monotone and verify a certain type of continuity. We prove integral representations formulas for such valuations which are, in addition, simple or homogeneous.},
author = {L. Cavallina, A. Colesanti},
journal = {Analysis and Geometry in Metric Spaces},
keywords = {convex functions; valuations; convex bodies; sub-level sets; intrinsic volumes},
language = {eng},
number = {1},
pages = {167-211, electronic only},
title = {Monotone Valuations on the Space of Convex Functions},
url = {http://eudml.org/doc/271207},
volume = {3},
year = {2015},
}
TY - JOUR
AU - L. Cavallina
AU - A. Colesanti
TI - Monotone Valuations on the Space of Convex Functions
JO - Analysis and Geometry in Metric Spaces
PY - 2015
VL - 3
IS - 1
SP - 167
EP - 211, electronic only
AB - We consider the space Cn of convex functions u defined in Rn with values in R ∪ {∞}, which are lower semi-continuous and such that lim|x| } ∞ u(x) = ∞. We study the valuations defined on Cn which are invariant under the composition with rigid motions, monotone and verify a certain type of continuity. We prove integral representations formulas for such valuations which are, in addition, simple or homogeneous.
LA - eng
KW - convex functions; valuations; convex bodies; sub-level sets; intrinsic volumes
UR - http://eudml.org/doc/271207
ER -
References
top- [1] W. K. Allard, The Riemann and Lebesgue integrals, lecture notes. Available at: http://www.math.duke.edu~wka/math204/
- [2] L. Ambrosio, N. Fusco, D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford University Press, New York, 2000. Zbl0957.49001
- [3] Y. Baryshnikov, R. Ghrist, M. Wright, Hadwiger’s Theorem for definable functions, Adv. Math. 245 (2013), 573-586. [WoS] Zbl1286.52006
- [4] L. Cavallina, Non-trivial translation invariant valuations on L1, in preparation.
- [5] A. Colesanti, I. Fragalà, The first variation of the total mass of log-concave functions and related inequalities, Adv. Math. 244 (2013), pp. 708-749. Zbl1305.26033
- [6] L. C. Evans, R. F. Gariepy, Measure theory and fine properties of fucntions, CRC Press, Boca Raton, 1992. Zbl0804.28001
- [7] H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957.
- [8] D. Klain, A short proof of Hadwiger’s characterization theorem, Mathematika 42 (1995), 329-339. Zbl0835.52010
- [9] D. Klain, G. Rota, Introduction to geometric probability, Cambridge University Press, New York, 1997. Zbl0896.60004
- [10] H. Kone, Valuations on Orlicz spaces and Lφ-star sets, Adv. in Appl. Math. 52 (2014), 82-98. Zbl1301.46009
- [11] M. Ludwig, Fisher information and matrix-valued valuations, Adv. Math. 226 (2011), 2700-2711. [WoS] Zbl1274.62064
- [12] M. Ludwig, Valuations on function spaces, Adv. Geom. 11 (2011), 745 - 756. [WoS] Zbl1235.52023
- [13] M. Ludwig, Valuations on Sobolev spaces, Amer. J. Math. 134 (2012), 824 - 842. Zbl1255.52013
- [14] M. Ludwig, Covariance matrices and valuations, Adv. in Appl. Math. 51 (2013), 359-366. Zbl1303.62016
- [15] M. Ober, Lp-Minkowski valuations on Lq-spaces, J. Math. Anal. Appl. 414 (2014), 68-87.
- [16] T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970. Zbl0193.18401
- [17] R. Schneider, Convex bodies: the Brunn-Minkowski theory, second expanded edition, Cambridge University Press, Cambridge, 2014.
- [18] A. Tsang, Valuations on Lp-spaces, Int. Math. Res. Not. IMRN 2010, 20, 3993-4023. Zbl1211.52013
- [19] A. Tsang, Minkowski valuations on Lp-spaces, Trans. Amer. Math. Soc. 364 (2012), 12, 6159-6186. Zbl1279.52008
- [20] T. Wang, Affine Sobolev inequalities, PhD Thesis, Technische Universität, Vienna, 2013.
- [21] T. Wang, Semi-valuations on BV(Rn), Indiana Univ. Math. J. 63 (2014), 1447–1465. Zbl1320.46035
- [22] M. Wright, Hadwiger integration on definable functions, PhD Thesis, 2011, University of Pennsylvania.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.