Equilibrium of maximal monotone operator in a given set
Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2000)
- Volume: 20, Issue: 2, page 159-169
- ISSN: 1509-9407
Access Full Article
topAbstract
topHow to cite
topDariusz Zagrodny. "Equilibrium of maximal monotone operator in a given set." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 20.2 (2000): 159-169. <http://eudml.org/doc/271461>.
@article{DariuszZagrodny2000,
abstract = {Sufficient conditions for an equilibrium of maximal monotone operator to be in a given set are provided. This partially answers to a question posed in [10].},
author = {Dariusz Zagrodny},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {subdifferentials; maximal monotonicity; equilibrium points; min-max; maximal monotone operator; equilibrium point; lower semi-continuous convex function; subdifferential; maximal monotone set-valued mapping},
language = {eng},
number = {2},
pages = {159-169},
title = {Equilibrium of maximal monotone operator in a given set},
url = {http://eudml.org/doc/271461},
volume = {20},
year = {2000},
}
TY - JOUR
AU - Dariusz Zagrodny
TI - Equilibrium of maximal monotone operator in a given set
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2000
VL - 20
IS - 2
SP - 159
EP - 169
AB - Sufficient conditions for an equilibrium of maximal monotone operator to be in a given set are provided. This partially answers to a question posed in [10].
LA - eng
KW - subdifferentials; maximal monotonicity; equilibrium points; min-max; maximal monotone operator; equilibrium point; lower semi-continuous convex function; subdifferential; maximal monotone set-valued mapping
UR - http://eudml.org/doc/271461
ER -
References
top- [1] A. Drwalewska and L. Gajek, On Localizing Global Pareto Solutions in a Given Convex Set, Applicationes Mathematicae 26 (1999), 383-301. Zbl1010.90071
- [2] L. Gajek and D. Zagrodny, Countably Orderable Sets and Their Applications in Optimization, Optimization 26 (1992), 287-301. Zbl0815.49020
- [3] R.R. Phelps, Convex Functions, Monotone Operators and Differentiability, Springer-Verlag, Berlin, Heidelberg 1989. Zbl0658.46035
- [4] M. Przeworski and D. Zagrodny, Constrained Equilibrium Point of Maximal Monotone Operator via Variational Inequality, Journal of Applied Analysis 5 (1999), 147-152.
- [5] M. Przeworski, Lokalizacja Punktów Wykresu Operatora Maksymalnie Monotonicznego, Praca doktorska, Instytut Matematyki Politechniki ódzkiej 1999.
- [6] R.T. Rockafellar and R.J-B. Wets, Variational Analysis, Springer-Verlag, Berlin, Heidelberg 1998. Zbl0888.49001
- [7] S. Rolewicz, Metric Linear Spaces, PWN, Warszawa and D. Reidel Publishing Company, Dordrecht, Boston 1984.
- [8] S. Simons, Subtangents with Controlled Slope, Nonlinear Analysis, Theory, Methods and Applications 22 (11) (1994), 1373-1389. Zbl0836.49009
- [9] S. Simons, Swimming Below Icebergs, Set-Valued Analysis 2 (1994), 327-337. Zbl0807.46002
- [10] S. Simons, Minimax and Monotonicity, Springer-Verlag, Berlin, Heidelberg 1998.
- [11] E. Zeidler, Nonlinear Functional Analysis and Its Applications, IIB Nonlinear Monotone Operators, Springer-Verlag, Berlin, Heidelberg 1989.
- [12] D. Zagrodny, The Maximal Monotonicity of the Subdifferentials of Convex Functions: Simons' Problem, Set-Valued Analysis 4 (1996), 301-314. Zbl0867.49015
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.