Equilibrium of maximal monotone operator in a given set

Dariusz Zagrodny

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2000)

  • Volume: 20, Issue: 2, page 159-169
  • ISSN: 1509-9407

Abstract

top
Sufficient conditions for an equilibrium of maximal monotone operator to be in a given set are provided. This partially answers to a question posed in [10].

How to cite

top

Dariusz Zagrodny. "Equilibrium of maximal monotone operator in a given set." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 20.2 (2000): 159-169. <http://eudml.org/doc/271461>.

@article{DariuszZagrodny2000,
abstract = {Sufficient conditions for an equilibrium of maximal monotone operator to be in a given set are provided. This partially answers to a question posed in [10].},
author = {Dariusz Zagrodny},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {subdifferentials; maximal monotonicity; equilibrium points; min-max; maximal monotone operator; equilibrium point; lower semi-continuous convex function; subdifferential; maximal monotone set-valued mapping},
language = {eng},
number = {2},
pages = {159-169},
title = {Equilibrium of maximal monotone operator in a given set},
url = {http://eudml.org/doc/271461},
volume = {20},
year = {2000},
}

TY - JOUR
AU - Dariusz Zagrodny
TI - Equilibrium of maximal monotone operator in a given set
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2000
VL - 20
IS - 2
SP - 159
EP - 169
AB - Sufficient conditions for an equilibrium of maximal monotone operator to be in a given set are provided. This partially answers to a question posed in [10].
LA - eng
KW - subdifferentials; maximal monotonicity; equilibrium points; min-max; maximal monotone operator; equilibrium point; lower semi-continuous convex function; subdifferential; maximal monotone set-valued mapping
UR - http://eudml.org/doc/271461
ER -

References

top
  1. [1] A. Drwalewska and L. Gajek, On Localizing Global Pareto Solutions in a Given Convex Set, Applicationes Mathematicae 26 (1999), 383-301. Zbl1010.90071
  2. [2] L. Gajek and D. Zagrodny, Countably Orderable Sets and Their Applications in Optimization, Optimization 26 (1992), 287-301. Zbl0815.49020
  3. [3] R.R. Phelps, Convex Functions, Monotone Operators and Differentiability, Springer-Verlag, Berlin, Heidelberg 1989. Zbl0658.46035
  4. [4] M. Przeworski and D. Zagrodny, Constrained Equilibrium Point of Maximal Monotone Operator via Variational Inequality, Journal of Applied Analysis 5 (1999), 147-152. 
  5. [5] M. Przeworski, Lokalizacja Punktów Wykresu Operatora Maksymalnie Monotonicznego, Praca doktorska, Instytut Matematyki Politechniki ódzkiej 1999. 
  6. [6] R.T. Rockafellar and R.J-B. Wets, Variational Analysis, Springer-Verlag, Berlin, Heidelberg 1998. Zbl0888.49001
  7. [7] S. Rolewicz, Metric Linear Spaces, PWN, Warszawa and D. Reidel Publishing Company, Dordrecht, Boston 1984. 
  8. [8] S. Simons, Subtangents with Controlled Slope, Nonlinear Analysis, Theory, Methods and Applications 22 (11) (1994), 1373-1389. Zbl0836.49009
  9. [9] S. Simons, Swimming Below Icebergs, Set-Valued Analysis 2 (1994), 327-337. Zbl0807.46002
  10. [10] S. Simons, Minimax and Monotonicity, Springer-Verlag, Berlin, Heidelberg 1998. 
  11. [11] E. Zeidler, Nonlinear Functional Analysis and Its Applications, IIB Nonlinear Monotone Operators, Springer-Verlag, Berlin, Heidelberg 1989. 
  12. [12] D. Zagrodny, The Maximal Monotonicity of the Subdifferentials of Convex Functions: Simons' Problem, Set-Valued Analysis 4 (1996), 301-314. Zbl0867.49015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.