# On relations among the generalized second-order directional derivatives

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2001)

- Volume: 21, Issue: 2, page 235-247
- ISSN: 1509-9407

## Access Full Article

top## Abstract

top## How to cite

topKarel Pastor. "On relations among the generalized second-order directional derivatives." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 21.2 (2001): 235-247. <http://eudml.org/doc/271473>.

@article{KarelPastor2001,

abstract = {In the paper, we deal with the relations among several generalized second-order directional derivatives. The results partially solve the problem which of the second-order optimality conditions is more useful.},

author = {Karel Pastor},

journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},

keywords = {generalized second-order directional derivative; convexity; second-order optimality conditions; Clarke subdifferential; second-order directional derivatives; convex functions},

language = {eng},

number = {2},

pages = {235-247},

title = {On relations among the generalized second-order directional derivatives},

url = {http://eudml.org/doc/271473},

volume = {21},

year = {2001},

}

TY - JOUR

AU - Karel Pastor

TI - On relations among the generalized second-order directional derivatives

JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization

PY - 2001

VL - 21

IS - 2

SP - 235

EP - 247

AB - In the paper, we deal with the relations among several generalized second-order directional derivatives. The results partially solve the problem which of the second-order optimality conditions is more useful.

LA - eng

KW - generalized second-order directional derivative; convexity; second-order optimality conditions; Clarke subdifferential; second-order directional derivatives; convex functions

UR - http://eudml.org/doc/271473

ER -

## References

top- [1] J.M. Borwein, M. Fabián, On generic second-order Gâteaux differentiability, Nonlinear Anal. T.M.A 20 (1993), 1373-1382. Zbl0843.46027
- [2] J.M. Borwein and D. Noll, Second-order differentiability of convex functions in Banach spaces, Trans. Amer. Math. Soc. 342 (1994), 43-81. Zbl0802.46027
- [3] A. Ben-Tal and J. Zowe, Directional derivatives in nonsmooth optimization, J. Optim. Theory Appl. 47 (1985), 483-490. Zbl0556.90074
- [4] F.H. Clarke, Necessary conditions for nonsmooth problems in optimal control and the calculus of variations, Ph.D. thesis, Univ. of Washington 1973.
- [5] F.H. Clarke, Optimization and nonsmooth analysis, J. Wiley, New York 1983. Zbl0582.49001
- [6] R. Cominetti, Equivalence between the classes of ${C}^{1,1}$ and twice locally Lipschitzian functions, Ph.D. thesis, Université Blaise Pascal 1989.
- [7] R. Cominetti and R. Correa, A generalized second-order derivative in nonsmooth optimization, SIAM J. Control Optim. 28 (1990), 789-809. Zbl0714.49020
- [8] W.L. Chan, L.R. Huang and K.F. Ng, On generalized second-order derivatives and Taylor expansions in nosmooth optimiyation, SIAM J. Control Optim. 32 (1994), 789-809.
- [9] P.G. Georgiev and N.P. Zlateva, Second-order subdifferentials of ${C}^{1,1}$ functions and optimality conditions, Set-Valued Analysis 4 (1996), 101-117. Zbl0864.49012
- [10] J.B. Hiriart-Urruty and C. Lemarchal, Convex Analysis nad Minimization Algorithms, Springer Verlag, Berlin 1993.
- [11] L.R. Huang and K.F. Ng, On some relations between Chaney's generalized second-order directional derivative and that of Ben-Tal and Zowe, SIAM J. Control Optim. 34 (1996), 1220-1234. Zbl0877.49019
- [12] V. Jeyakumar and X.Q. Yang, Approximate generalized Hessians and Taylor's expansions for continously Gâteaux differentiable functions, Nonlinear Anal. T.M.A 36 (1999), 353-368. Zbl0931.49011
- [13] G. Lebourg, Generic differentiability of Lipschitz functions, Trans. Amer. Math. Soc. 256 (1979), 125-144. Zbl0435.46031
- [14] Y. Maruyama, Second-order necessary conditions for nonlinear problems in Banach spases and their applications to optimal control problems, Math. Programming 41 (1988), 73-96.
- [15] P. Michel and J.P. Penot, Second-order moderate derivatives, Nonlinear Anal. T.M.A 22 (1994), 809-821. Zbl0810.49017
- [16] K. Pastor, Generalized second-order directional derivatives for locally Lipschitz functions, Preprint no. 17/2001 of Palacký Univerzity, Olomouc.
- [17] R.T. Rockafellar, Characterization of the subdifferentials of convex functions, Pacific J. Math. 17 (1966), 497-509. Zbl0145.15901
- [18] R.T. Rockafellar, Second-order optimality conditions in nonlinear programming obtained by way of epi-derivatives, Math. Oper. Res. 14 (1989), 462-484. Zbl0698.90070
- [19] X.Q. Yang, On relations and applications of generalized second-order directional derivatives, Non. Anal. T.M.A 36 (1999), 595-614. Zbl0990.49016
- [20] X.Q. Yang, On second-order directional derivatives, Non. Anal. T.M.A 26, 55-66. Zbl0839.90138

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.