Order boundedness and weak compactness of the set of quasi-measure extensions of a quasi-measure
Commentationes Mathematicae Universitatis Carolinae (2015)
- Volume: 56, Issue: 3, page 331-345
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topLipecki, Zbigniew. "Order boundedness and weak compactness of the set of quasi-measure extensions of a quasi-measure." Commentationes Mathematicae Universitatis Carolinae 56.3 (2015): 331-345. <http://eudml.org/doc/271563>.
@article{Lipecki2015,
abstract = {Let $\mathfrak \{M\}$ and $\mathfrak \{R\}$ be algebras of subsets of a set $\Omega $ with $\mathfrak \{M\}\subset \mathfrak \{R\}$, and denote by $E(\mu )$ the set of all quasi-measure extensions of a given quasi-measure $\mu $ on $\mathfrak \{M\}$ to $\mathfrak \{R\}$. We give some criteria for order boundedness of $E(\mu )$ in $ba(\mathfrak \{R\})$, in the general case as well as for atomic $\mu $. Order boundedness implies weak compactness of $E (\mu )$. We show that the converse implication holds under some assumptions on $\mathfrak \{M\}$, $\mathfrak \{R\}$ and $\mu $ or $\mu $ alone, but not in general.},
author = {Lipecki, Zbigniew},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {linear lattice; order bounded; additive set function; quasi-measure; atomic; extension; convex set; extreme point; weakly compact},
language = {eng},
number = {3},
pages = {331-345},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Order boundedness and weak compactness of the set of quasi-measure extensions of a quasi-measure},
url = {http://eudml.org/doc/271563},
volume = {56},
year = {2015},
}
TY - JOUR
AU - Lipecki, Zbigniew
TI - Order boundedness and weak compactness of the set of quasi-measure extensions of a quasi-measure
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2015
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 56
IS - 3
SP - 331
EP - 345
AB - Let $\mathfrak {M}$ and $\mathfrak {R}$ be algebras of subsets of a set $\Omega $ with $\mathfrak {M}\subset \mathfrak {R}$, and denote by $E(\mu )$ the set of all quasi-measure extensions of a given quasi-measure $\mu $ on $\mathfrak {M}$ to $\mathfrak {R}$. We give some criteria for order boundedness of $E(\mu )$ in $ba(\mathfrak {R})$, in the general case as well as for atomic $\mu $. Order boundedness implies weak compactness of $E (\mu )$. We show that the converse implication holds under some assumptions on $\mathfrak {M}$, $\mathfrak {R}$ and $\mu $ or $\mu $ alone, but not in general.
LA - eng
KW - linear lattice; order bounded; additive set function; quasi-measure; atomic; extension; convex set; extreme point; weakly compact
UR - http://eudml.org/doc/271563
ER -
References
top- Aliprantis C.D., Burkinshaw O., Positive Operators, Academic Press, Orlando, 1985. Zbl1098.47001MR0809372
- Alvarez de Araya J., 10.2140/pjm.1969.29.1, Pacific J. Math. 29 (1969), 1–10. MR0245753DOI10.2140/pjm.1969.29.1
- Bhaskara Rao K. P. S., Bhaskara Rao M., Theory of Charges. A Study of Finitely Additive Measures, Academic Press, London, 1983. Zbl0516.28001MR0751777
- Bourbaki N., Espaces vectoriels topologiques, Chapitres 1 à 5, Springer, Berlin, 2007. Zbl1106.46003
- Brooks J. K., 10.1090/S0002-9904-1972-12960-4, Bull. Amer. Math. Soc. 78 (1972), 284–287. Zbl0241.28011MR0324408DOI10.1090/S0002-9904-1972-12960-4
- Drewnowski L., Topological rings of sets, continuous set functions, integration. I, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), 269–276. Zbl0249.28004MR0306432
- Hoffmann-Jørgensen J., Vector measures, Math. Scand. 28 (1971), 5–32. Zbl0217.38001MR0306438
- Lipecki Z., 10.1007/BF02567999, Manuscripta Math. 86 (1995), 349–365. Zbl1118.28003MR1323797DOI10.1007/BF02567999
- Lipecki Z., 10.1007/BF02567525, Manuscripta Math. 89 (1996), 395–406. Zbl0847.28001MR1378601DOI10.1007/BF02567525
- Lipecki Z., 10.1007/s002290050115, Manuscripta Math. 97 (1998), 469–481. Zbl0918.28003MR1660148DOI10.1007/s002290050115
- Lipecki Z., 10.1007/s002290170031, Manuscripta Math. 104 (2001), 333–341. Zbl1041.28001MR1828879DOI10.1007/s002290170031
- Lipecki Z., The variation of an additive function on a Boolean algebra, Publ. Math. Debrecen 63 (2003), 445–459. Zbl1064.28005MR2018076
- Lipecki Z., 10.1007/s00229-005-0571-4, Manuscripta Math. 117 (2005), 463–473. Zbl1092.28002MR2163488DOI10.1007/s00229-005-0571-4
- Lipecki Z., 10.1007/s00229-007-0085-3, Manuscripta Math. 123 (2007), 133–146. Zbl1118.28003MR2306629DOI10.1007/s00229-007-0085-3
- Lipecki Z., 10.4064/cm123-1-10, Colloq. Math. 123 (2011), 133–147. Zbl1223.28002MR2794124DOI10.4064/cm123-1-10
- Lipecki Z., Compactness and extreme points of the set of quasi-measure extensions of a quasi-measure, Dissertationes Math. (Rozprawy Mat.) 493 (2013), 59 pp. Zbl1283.28002MR3135305
- Marczewski E., Measures in almost independent fields, Fund. Math. 38 (1951), 217–229; reprinted in: Marczewski E., Collected Mathematical Papers, Institute of Mathematics, Polish Academy of Sciences, Warszawa, 1996, pp. 413–425. Zbl0045.02303MR0047116
- Nygaard O., P oldvere M., 10.1007/s00013-006-1859-7, Arch. Math. (Basel) 88 (2007), 57–61. MR2289601DOI10.1007/s00013-006-1859-7
- Plachky D., 10.1090/S0002-9939-1976-0419711-3, Proc. Amer. Math. Soc. 54 (1976), 193–196. Zbl0285.28005MR0419711DOI10.1090/S0002-9939-1976-0419711-3
- Wnuk W., Banach Lattices with Order Continuous Norms, PWN---Polish Sci. Publ., Warszawa, 1999. Zbl0948.46017
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.