Order-theoretic properties of some sets of quasi-measures
Commentationes Mathematicae Universitatis Carolinae (2017)
- Volume: 58, Issue: 2, page 197-212
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topLipecki, Zbigniew. "Order-theoretic properties of some sets of quasi-measures." Commentationes Mathematicae Universitatis Carolinae 58.2 (2017): 197-212. <http://eudml.org/doc/288211>.
@article{Lipecki2017,
abstract = {Let $\mathfrak \{M\}$ and $\mathfrak \{R\}$ be algebras of subsets of a set $\Omega $ with $\mathfrak \{M\}\subset \mathfrak \{R\}$, and denote by $E(\mu )$ the set of all quasi-measure extensions of a given quasi-measure $\mu $ on $\mathfrak \{M\}$ to $\mathfrak \{R\}$. We show that $E(\mu )$ is order bounded if and only if it is contained in a principal ideal in $ba(\mathfrak \{R\})$ if and only if it is weakly compact and $\operatorname\{extr\} E(\mu )$ is contained in a principal ideal in $ba(\mathfrak \{R\})$. We also establish some criteria for the coincidence of the ideals, in $ba(\mathfrak \{R\})$, generated by $E(\mu )$ and $\operatorname\{extr\} E(\mu )$.},
author = {Lipecki, Zbigniew},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {linear lattice; ideal; order bounded; ideal dominated; order unit; Banach lattice; $\textit \{AM\}$-space; convex set; extreme point; weakly compact; additive set function; quasi-measure; atomic; extension},
language = {eng},
number = {2},
pages = {197-212},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Order-theoretic properties of some sets of quasi-measures},
url = {http://eudml.org/doc/288211},
volume = {58},
year = {2017},
}
TY - JOUR
AU - Lipecki, Zbigniew
TI - Order-theoretic properties of some sets of quasi-measures
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2017
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 58
IS - 2
SP - 197
EP - 212
AB - Let $\mathfrak {M}$ and $\mathfrak {R}$ be algebras of subsets of a set $\Omega $ with $\mathfrak {M}\subset \mathfrak {R}$, and denote by $E(\mu )$ the set of all quasi-measure extensions of a given quasi-measure $\mu $ on $\mathfrak {M}$ to $\mathfrak {R}$. We show that $E(\mu )$ is order bounded if and only if it is contained in a principal ideal in $ba(\mathfrak {R})$ if and only if it is weakly compact and $\operatorname{extr} E(\mu )$ is contained in a principal ideal in $ba(\mathfrak {R})$. We also establish some criteria for the coincidence of the ideals, in $ba(\mathfrak {R})$, generated by $E(\mu )$ and $\operatorname{extr} E(\mu )$.
LA - eng
KW - linear lattice; ideal; order bounded; ideal dominated; order unit; Banach lattice; $\textit {AM}$-space; convex set; extreme point; weakly compact; additive set function; quasi-measure; atomic; extension
UR - http://eudml.org/doc/288211
ER -
References
top- Abramovič Ju. A., Some theorems on normed lattices, Vestnik Leningrad. Univ. 13 (1971), 5–11 (in Russian); English transl.: Vestnik Leningrad Univ. Math. 4 (1977), 153–159. MR0288554
- Aliprantis C.D., Burkinshaw O., Locally Solid Riesz Spaces, Academic Press, Orlando, 1978. Zbl1043.46003MR0493242
- Bhaskara Rao K.P.S., Bhaskara Rao M., Theory of Charges. A Study of Finitely Additive Measures, Academic Press, London, 1983. Zbl0516.28001MR0751777
- Lipecki Z., 10.1007/BF02567999, Manuscripta Math. 86 (1995), 349–365. Zbl1118.28003MR1323797DOI10.1007/BF02567999
- Lipecki Z., 10.1007/BF02567525, Manuscripta Math. 89 (1996), 395–406. Zbl0847.28001MR1378601DOI10.1007/BF02567525
- Lipecki Z., 10.1007/s002290170031, Manuscripta Math. 104 (2001), 333–341. Zbl1041.28001MR1828879DOI10.1007/s002290170031
- Lipecki Z., 10.4064/cm123-1-10, Colloq. Math. 123 (2011), 133–147. Zbl1223.28002MR2794124DOI10.4064/cm123-1-10
- Lipecki Z., Compactness and extreme points of the set of quasi-measure extensions of a quasi-measure, Dissertationes Math. (Rozprawy Mat.) 493 (2013), 59 pp. Zbl1283.28002MR3135305
- Lipecki Z., Order boundedness and weak compactness of the set of quasi-measure extensions of a quasi-measure, Comment. Math. Univ. Carolin. 56 (2015), 331–345. MR3390280
- Marczewski E., 10.4064/fm-38-1-217-229, Fund. Math. 38 (1951), 217–229; reprinted in: Marczewski E., Collected Mathematical Papers, Institute of Mathematics, Polish Academy of Sciences, Warszawa, 1996, 413–425. Zbl0045.02303MR0047116DOI10.4064/fm-38-1-217-229
- de Pagter B., Wnuk W., 10.1016/0019-3577(90)90026-J, Indag. Math. (N.S.) 1 (1990), 391–395. Zbl0731.46008MR1075887DOI10.1016/0019-3577(90)90026-J
- Plachky D., 10.1090/S0002-9939-1976-0419711-3, Proc. Amer. Math. Soc. 54 (1976), 193–196. Zbl0285.28005MR0419711DOI10.1090/S0002-9939-1976-0419711-3
- Schaefer H.H., Topological Vector Spaces, Macmillan, New York, 1966. Zbl0983.46002MR0193469
- Schaefer H.H., Banach Lattices and Positive Operators, Springer, Berlin and New York, 1974. Zbl0296.47023MR0423039
- Schwarz H.-U., Banach Lattices and Operators, Teubner, Leipzig, 1984. Zbl0585.47025MR0781131
- Zaanen A.C., Riesz Spaces II, North-Holland, Amsterdam, 1983. Zbl0519.46001MR0704021
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.