Choquet-like integrals with respect to level-dependent capacities and ϕ -ordinal sums of aggregation function

Radko Mesiar; Peter Smrek

Kybernetika (2015)

  • Volume: 51, Issue: 3, page 420-432
  • ISSN: 0023-5954

Abstract

top
In this study we merge the concepts of Choquet-like integrals and the Choquet integral with respect to level dependent capacities. For finite spaces and piece-wise constant level-dependent capacities our approach can be represented as a ϕ -ordinal sum of Choquet-like integrals acting on subdomains of the considered scale, and thus it can be regarded as extension method. The approach is illustrated by several examples.

How to cite

top

Mesiar, Radko, and Smrek, Peter. "Choquet-like integrals with respect to level-dependent capacities and $\varphi $-ordinal sums of aggregation function." Kybernetika 51.3 (2015): 420-432. <http://eudml.org/doc/271612>.

@article{Mesiar2015,
abstract = {In this study we merge the concepts of Choquet-like integrals and the Choquet integral with respect to level dependent capacities. For finite spaces and piece-wise constant level-dependent capacities our approach can be represented as a $\varphi $-ordinal sum of Choquet-like integrals acting on subdomains of the considered scale, and thus it can be regarded as extension method. The approach is illustrated by several examples.},
author = {Mesiar, Radko, Smrek, Peter},
journal = {Kybernetika},
keywords = {Choquet integral; Choquet-like integral; level-dependent capacity; $\varphi $-ordinal sum of aggregation functions; Choquet integral; Choquet-like integral; level-dependent capacity; $\varphi $-ordinal sum of aggregation functions},
language = {eng},
number = {3},
pages = {420-432},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Choquet-like integrals with respect to level-dependent capacities and $\varphi $-ordinal sums of aggregation function},
url = {http://eudml.org/doc/271612},
volume = {51},
year = {2015},
}

TY - JOUR
AU - Mesiar, Radko
AU - Smrek, Peter
TI - Choquet-like integrals with respect to level-dependent capacities and $\varphi $-ordinal sums of aggregation function
JO - Kybernetika
PY - 2015
PB - Institute of Information Theory and Automation AS CR
VL - 51
IS - 3
SP - 420
EP - 432
AB - In this study we merge the concepts of Choquet-like integrals and the Choquet integral with respect to level dependent capacities. For finite spaces and piece-wise constant level-dependent capacities our approach can be represented as a $\varphi $-ordinal sum of Choquet-like integrals acting on subdomains of the considered scale, and thus it can be regarded as extension method. The approach is illustrated by several examples.
LA - eng
KW - Choquet integral; Choquet-like integral; level-dependent capacity; $\varphi $-ordinal sum of aggregation functions; Choquet integral; Choquet-like integral; level-dependent capacity; $\varphi $-ordinal sum of aggregation functions
UR - http://eudml.org/doc/271612
ER -

References

top
  1. Choquet, G., 10.5802/aif.53, Annales de l'Institite Fourier 5 (1953-1954), 131-295. Zbl0679.01011MR0080760DOI10.5802/aif.53
  2. Denneberg, D., 10.1007/978-94-017-2434-0, In: Theory and Decision Library. Series B: Mathematical and Statistical Methods 27. Kluwer Academic Publishers Group, Dordrecht 1994. Zbl0968.28009MR1320048DOI10.1007/978-94-017-2434-0
  3. Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E., 10.1109/sisy.2008.4664901, Cambridge University Press, Cambridge 2009. Zbl1206.68299MR2538324DOI10.1109/sisy.2008.4664901
  4. Greco, S., Matarazzo, B., Giove, S., 10.1016/j.fss.2011.03.012, Fuzzy Sets and Systems 175 (2011), 1-35. Zbl1218.28014MR2803409DOI10.1016/j.fss.2011.03.012
  5. Mesiar, R., 10.1006/jmaa.1995.1312, J. Math. Anal. Appl. 194 (1995), 477-488. Zbl0845.28010MR1345050DOI10.1006/jmaa.1995.1312
  6. Mesiar, R., Baets, B. De, New construction methods for aggregation operators., In: Proc. IPMU'2000, Madrid, pp. 701-706. 
  7. Pap, E., ed., 10.1016/b978-044450263-6/50000-2, North-Holland, Amsterdam 2002. MR1953489DOI10.1016/b978-044450263-6/50000-2
  8. Pap, E., An integral generated by a decomposable measure., Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 20 (1990), 135-144. Zbl0754.28002MR1158414
  9. Sander, W., Siedekum, J., Multiplication, distributivity and fuzzy integral, I, II, III., Kybernetika 41 (2005) I: 397-422, II: 469-496, III: 497-518. MR2181427
  10. Schmeidler, D., 10.1090/s0002-9939-1986-0835875-8, Proc. Amer. Math. Soc. 97 (1986), 255-261. Zbl0687.28008MR0835875DOI10.1090/s0002-9939-1986-0835875-8
  11. Schmeidler, D., 10.2307/1911053, Econometrica 57 (1989), 571-87. Zbl0672.90011MR0999273DOI10.2307/1911053
  12. Sugeno, M., Theory of Fuzzy Integrals and its Applications., PhD Thesis, Tokyo Institute of Technology, 1974. 
  13. Sugeno, M., Murofushi, T., 10.1016/0022-247x(87)90354-4, J. Math. Anal. Appl. 122 (1987), 197-222. Zbl0611.28010MR0874969DOI10.1016/0022-247x(87)90354-4
  14. Vitali, G., 10.1007/BF02409934, Ann. Mat. Pura Appl. 2 (1925), 111-121. English translation: On the definition of integral of functions of one variable. Rivista di Matematica per le Scienze Sociali 20 (1997), 159-168. MR1553076DOI10.1007/BF02409934
  15. Wang, Z., Klir, G. J., 10.1007/978-0-387-76852-6, Springer, 2009. Zbl1184.28002MR2453907DOI10.1007/978-0-387-76852-6

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.