Multiplication, distributivity and fuzzy-integral. II

Wolfgang Sander; Jens Siedekum

Kybernetika (2005)

  • Volume: 41, Issue: 4, page [469]-496
  • ISSN: 0023-5954

Abstract

top
Based on results of generalized additions and generalized multiplications, proven in Part I, we first show a structure theorem on two generalized additions which do not coincide. Then we prove structure and representation theorems for generalized multiplications which are connected by a strong and weak distributivity law, respectively. Finally – as a last preparation for the introduction of a framework for a fuzzy integral – we introduce generalized differences with respect to t-conorms (which are not necessarily Archimedean) and prove their essential properties.

How to cite

top

Sander, Wolfgang, and Siedekum, Jens. "Multiplication, distributivity and fuzzy-integral. II." Kybernetika 41.4 (2005): [469]-496. <http://eudml.org/doc/33767>.

@article{Sander2005,
abstract = {Based on results of generalized additions and generalized multiplications, proven in Part I, we first show a structure theorem on two generalized additions which do not coincide. Then we prove structure and representation theorems for generalized multiplications which are connected by a strong and weak distributivity law, respectively. Finally – as a last preparation for the introduction of a framework for a fuzzy integral – we introduce generalized differences with respect to t-conorms (which are not necessarily Archimedean) and prove their essential properties.},
author = {Sander, Wolfgang, Siedekum, Jens},
journal = {Kybernetika},
keywords = {fuzzy measures; distributivity law; restricted domain; pseudo- addition; pseudo-multiplication; Choquet integral; Sugeno integral; fuzzy measure; distributivity law; restricted domain; pseudo-addition; pseudomultiplication; Choquet integral; Sugeno integral},
language = {eng},
number = {4},
pages = {[469]-496},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Multiplication, distributivity and fuzzy-integral. II},
url = {http://eudml.org/doc/33767},
volume = {41},
year = {2005},
}

TY - JOUR
AU - Sander, Wolfgang
AU - Siedekum, Jens
TI - Multiplication, distributivity and fuzzy-integral. II
JO - Kybernetika
PY - 2005
PB - Institute of Information Theory and Automation AS CR
VL - 41
IS - 4
SP - [469]
EP - 496
AB - Based on results of generalized additions and generalized multiplications, proven in Part I, we first show a structure theorem on two generalized additions which do not coincide. Then we prove structure and representation theorems for generalized multiplications which are connected by a strong and weak distributivity law, respectively. Finally – as a last preparation for the introduction of a framework for a fuzzy integral – we introduce generalized differences with respect to t-conorms (which are not necessarily Archimedean) and prove their essential properties.
LA - eng
KW - fuzzy measures; distributivity law; restricted domain; pseudo- addition; pseudo-multiplication; Choquet integral; Sugeno integral; fuzzy measure; distributivity law; restricted domain; pseudo-addition; pseudomultiplication; Choquet integral; Sugeno integral
UR - http://eudml.org/doc/33767
ER -

References

top
  1. Aczél J., Lectures on Functional Equations and Their Applications, Academic Press, New York – London 1966 MR0208210
  2. Benvenuti P., Mesiar, R., Vivona D., Monotone set-functions-based integrals, In: Handbook of Measure Theory, Vol. II (E. Pap, ed.), Elsevier, Amsterdam 2002, pp. 1329–1379 Zbl1099.28007MR1954643
  3. Benvenuti P., Vivona, D., Divari M., 10.1007/s00010-002-8020-x, Aequationes Math. 63 (2002), 220–230 MR1904716DOI10.1007/s00010-002-8020-x
  4. Bertoluzza C., Cariolaro D., 10.1016/S0165-0114(96)00053-X, Fuzzy Sets and Systems 88 (1997), 355–362 (1997) Zbl0923.94049MR1456033DOI10.1016/S0165-0114(96)00053-X
  5. deCampos L. M., Bolaños M. J., 10.1016/0165-0114(92)90037-5, Fuzzy Sets and Systems 52 (1992), 61–67 (1992) MR1195202DOI10.1016/0165-0114(92)90037-5
  6. Denneberg D., Non-additive Measure and Integral, Kluwer, Dordrecht 1994 Zbl0968.28009MR1320048
  7. Fodor J., Roubens M., Fuzzy Preference Modelling and Multicriteria Decision Support, Kluwer Academic Publishers, Dordrecht 1994 Zbl0827.90002
  8. Grabisch M., Murofushi, T., (eds.) M. Sugeno, Fuzzy Measures and Integrals, Theory and Applications. Physica–Verlag, Heidelberg 2000 Zbl0935.00014MR1767776
  9. Grabisch M., Nguyen H. T., Walker E. A., Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference, Kluwer Academic Publishers, Dordrecht 1995 Zbl0817.94036MR1472733
  10. Kruse R. L., Deeley J. J., 10.2307/2316804, Amer. Math. Soc. 76 (1969), 74–76 (1969) DOI10.2307/2316804
  11. Klement E. P., Mesiar, R., Pap E., Triangular Norms, (Trends in Logic, Volume 8.) Kluwer Academic Publishers, Dordrecht 2000 Zbl1087.20041MR1790096
  12. Ling C. H., Representations of associative functions, Publ. Math. Debrecen 12 (1965), 189–212 (1965) MR0190575
  13. Mesiar R., 10.1006/jmaa.1995.1312, J. Math. Anal. Appl. 194 (1995), 477–488 (194) MR1345050DOI10.1006/jmaa.1995.1312
  14. Mostert P. S., Shields A. L., 10.2307/1969668, Ann. of Math. 65 (1957), 117–143 (1957) MR0084103DOI10.2307/1969668
  15. Murofushi T., Sugeno M., Fuzzy t-conorm integral with respect to fuzzy measures: Generalization of Sugeno integral and Choquet integral, Fuzzy Sets and Systems 42 (1991), 57–71 (1991) Zbl0733.28014MR1123577
  16. Pap E., Null-Additive Set Functions, Kluwer Academic Publishers. Dordrecht 1995 Zbl1003.28012MR1368630
  17. Sander W., Associative aggregation operators, In: Aggregation Operators. New Trends and Applications (T. Calvo, G. Mayor, and R. Mesiar, eds.), Physica–Verlag, Heidelberg – New York 2002, pp. 124–158 Zbl1025.03054MR1936386
  18. Shilkret N., 10.1016/S1385-7258(71)80017-3, Indag. Math. 33 (1971), 109–116 (1971) MR0288225DOI10.1016/S1385-7258(71)80017-3
  19. Siedekum J., Multiplikation und t-Conorm Integral, Ph.D. Thesis. Braunschweig 2002 Zbl1196.28033
  20. Sugeno M., Murofushi T., 10.1016/0022-247X(87)90354-4, J. Math. Anal. Appl. 122 (1987), 197–222 (1987) Zbl0611.28010MR0874969DOI10.1016/0022-247X(87)90354-4
  21. Wang Z., Klir G. J., Fuzzy Measure Theory, Plenum Press, New York 1992 Zbl0812.28010MR1212086
  22. Weber S., 10.1016/0022-247X(84)90061-1, J. Math. Anal. Appl. 101 (1984), 114–138 (1984) Zbl0614.28019MR0746230DOI10.1016/0022-247X(84)90061-1

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.