Bifurcations of invariant measures in discrete-time parameter dependent cocycles

Anastasia Maltseva; Volker Reitmann

Mathematica Bohemica (2015)

  • Volume: 140, Issue: 2, page 205-213
  • ISSN: 0862-7959

Abstract

top
We consider parameter-dependent cocycles generated by nonautonomous difference equations. One of them is a discrete-time cardiac conduction model. For this system with a control variable a cocycle formulation is presented. We state a theorem about upper Hausdorff dimension estimates for cocycle attractors which includes some regulating function. We also consider the existence of invariant measures for cocycle systems using some elements of Perron-Frobenius theory and discuss the bifurcation of parameter-dependent measures.

How to cite

top

Maltseva, Anastasia, and Reitmann, Volker. "Bifurcations of invariant measures in discrete-time parameter dependent cocycles." Mathematica Bohemica 140.2 (2015): 205-213. <http://eudml.org/doc/271641>.

@article{Maltseva2015,
abstract = {We consider parameter-dependent cocycles generated by nonautonomous difference equations. One of them is a discrete-time cardiac conduction model. For this system with a control variable a cocycle formulation is presented. We state a theorem about upper Hausdorff dimension estimates for cocycle attractors which includes some regulating function. We also consider the existence of invariant measures for cocycle systems using some elements of Perron-Frobenius theory and discuss the bifurcation of parameter-dependent measures.},
author = {Maltseva, Anastasia, Reitmann, Volker},
journal = {Mathematica Bohemica},
keywords = {discrete-time parameter-dependent cocycles; Hausdorff dimension estimate; invariant measure},
language = {eng},
number = {2},
pages = {205-213},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Bifurcations of invariant measures in discrete-time parameter dependent cocycles},
url = {http://eudml.org/doc/271641},
volume = {140},
year = {2015},
}

TY - JOUR
AU - Maltseva, Anastasia
AU - Reitmann, Volker
TI - Bifurcations of invariant measures in discrete-time parameter dependent cocycles
JO - Mathematica Bohemica
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 140
IS - 2
SP - 205
EP - 213
AB - We consider parameter-dependent cocycles generated by nonautonomous difference equations. One of them is a discrete-time cardiac conduction model. For this system with a control variable a cocycle formulation is presented. We state a theorem about upper Hausdorff dimension estimates for cocycle attractors which includes some regulating function. We also consider the existence of invariant measures for cocycle systems using some elements of Perron-Frobenius theory and discuss the bifurcation of parameter-dependent measures.
LA - eng
KW - discrete-time parameter-dependent cocycles; Hausdorff dimension estimate; invariant measure
UR - http://eudml.org/doc/271641
ER -

References

top
  1. Arnold, L., Random Dynamical Systems, Springer Monographs in Mathematics Springer, Berlin (1998). (1998) Zbl0938.37031MR1374107
  2. Baladi, V., Viana, M., 10.24033/asens.1745, Ann. Sci. Éc. Norm. Supér. (4) 29 (1996), 483-517. (1996) Zbl0868.58051MR1386223DOI10.24033/asens.1745
  3. Bandtlow, O. F., Antoniou, I., Suchanecki, Z., Resonances of dynamical systems and Fredholm-Riesz operators on rigged Hilbert spaces, Computational Tools of Complex Systems I, Comput. Math. Appl. 34 (1997), 95-102. (1997) MR1478754
  4. Boichenko, V. A., Leonov, G. A., Reitmann, V., Dimension Theory for Ordinary Differential Equations, Teubner Texts in Mathematics 141 Teubner, Wiesbaden (2005). (2005) Zbl1094.34002MR2381409
  5. Crauel, H., Flandoli, F., 10.1023/A:1022605313961, J. Dyn. Differ. Equations 10 (1998), 449-474. (1998) Zbl0927.37031MR1646622DOI10.1023/A:1022605313961
  6. Glass, L., Guevera, M. R., Shrier, A., 10.1111/j.1749-6632.1987.tb48731.x, Ann. N. Y. Acad. Sci. 504 (1987), 168-178. (1987) DOI10.1111/j.1749-6632.1987.tb48731.x
  7. Kloeden, P. E., Schmalfu{ß}, B., 10.1023/A:1019156812251, Numer. Algorithms 14 (1997), 141-152. (1997) Zbl0886.65077MR1456499DOI10.1023/A:1019156812251
  8. Maltseva, A., Reitmann, V., 10.1134/S0012266114130035, Differ. Equ. 50 (2014), 1718-1732. (2014) Zbl1317.39008MR3372683DOI10.1134/S0012266114130035
  9. Reitmann, V., Dynamical Systems, Attractors and Estimates of Their Dimension, Saint Petersburg State University Press Saint Petersburg (2013), Russian. (2013) 
  10. Reitmann, V., Slepukhin, A. S., 10.3103/S1063454111040091, Vestn. St. Petersbg. Univ., Math. 44 (2011), 292-300 translation from Vestn. St.-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 2011 (2011), 61-70. (2011) Zbl1303.37009MR2918529DOI10.3103/S1063454111040091
  11. Sun, J., Amellal, F., Glass, L., Billete, J., 10.1006/jtbi.1995.0045, J. Theor. Biol. 173 (1995), 79-91. (1995) DOI10.1006/jtbi.1995.0045

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.