Bifurcations of invariant measures in discrete-time parameter dependent cocycles
Anastasia Maltseva; Volker Reitmann
Mathematica Bohemica (2015)
- Volume: 140, Issue: 2, page 205-213
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topMaltseva, Anastasia, and Reitmann, Volker. "Bifurcations of invariant measures in discrete-time parameter dependent cocycles." Mathematica Bohemica 140.2 (2015): 205-213. <http://eudml.org/doc/271641>.
@article{Maltseva2015,
abstract = {We consider parameter-dependent cocycles generated by nonautonomous difference equations. One of them is a discrete-time cardiac conduction model. For this system with a control variable a cocycle formulation is presented. We state a theorem about upper Hausdorff dimension estimates for cocycle attractors which includes some regulating function. We also consider the existence of invariant measures for cocycle systems using some elements of Perron-Frobenius theory and discuss the bifurcation of parameter-dependent measures.},
author = {Maltseva, Anastasia, Reitmann, Volker},
journal = {Mathematica Bohemica},
keywords = {discrete-time parameter-dependent cocycles; Hausdorff dimension estimate; invariant measure},
language = {eng},
number = {2},
pages = {205-213},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Bifurcations of invariant measures in discrete-time parameter dependent cocycles},
url = {http://eudml.org/doc/271641},
volume = {140},
year = {2015},
}
TY - JOUR
AU - Maltseva, Anastasia
AU - Reitmann, Volker
TI - Bifurcations of invariant measures in discrete-time parameter dependent cocycles
JO - Mathematica Bohemica
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 140
IS - 2
SP - 205
EP - 213
AB - We consider parameter-dependent cocycles generated by nonautonomous difference equations. One of them is a discrete-time cardiac conduction model. For this system with a control variable a cocycle formulation is presented. We state a theorem about upper Hausdorff dimension estimates for cocycle attractors which includes some regulating function. We also consider the existence of invariant measures for cocycle systems using some elements of Perron-Frobenius theory and discuss the bifurcation of parameter-dependent measures.
LA - eng
KW - discrete-time parameter-dependent cocycles; Hausdorff dimension estimate; invariant measure
UR - http://eudml.org/doc/271641
ER -
References
top- Arnold, L., Random Dynamical Systems, Springer Monographs in Mathematics Springer, Berlin (1998). (1998) Zbl0938.37031MR1374107
- Baladi, V., Viana, M., 10.24033/asens.1745, Ann. Sci. Éc. Norm. Supér. (4) 29 (1996), 483-517. (1996) Zbl0868.58051MR1386223DOI10.24033/asens.1745
- Bandtlow, O. F., Antoniou, I., Suchanecki, Z., Resonances of dynamical systems and Fredholm-Riesz operators on rigged Hilbert spaces, Computational Tools of Complex Systems I, Comput. Math. Appl. 34 (1997), 95-102. (1997) MR1478754
- Boichenko, V. A., Leonov, G. A., Reitmann, V., Dimension Theory for Ordinary Differential Equations, Teubner Texts in Mathematics 141 Teubner, Wiesbaden (2005). (2005) Zbl1094.34002MR2381409
- Crauel, H., Flandoli, F., 10.1023/A:1022605313961, J. Dyn. Differ. Equations 10 (1998), 449-474. (1998) Zbl0927.37031MR1646622DOI10.1023/A:1022605313961
- Glass, L., Guevera, M. R., Shrier, A., 10.1111/j.1749-6632.1987.tb48731.x, Ann. N. Y. Acad. Sci. 504 (1987), 168-178. (1987) DOI10.1111/j.1749-6632.1987.tb48731.x
- Kloeden, P. E., Schmalfu{ß}, B., 10.1023/A:1019156812251, Numer. Algorithms 14 (1997), 141-152. (1997) Zbl0886.65077MR1456499DOI10.1023/A:1019156812251
- Maltseva, A., Reitmann, V., 10.1134/S0012266114130035, Differ. Equ. 50 (2014), 1718-1732. (2014) Zbl1317.39008MR3372683DOI10.1134/S0012266114130035
- Reitmann, V., Dynamical Systems, Attractors and Estimates of Their Dimension, Saint Petersburg State University Press Saint Petersburg (2013), Russian. (2013)
- Reitmann, V., Slepukhin, A. S., 10.3103/S1063454111040091, Vestn. St. Petersbg. Univ., Math. 44 (2011), 292-300 translation from Vestn. St.-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 2011 (2011), 61-70. (2011) Zbl1303.37009MR2918529DOI10.3103/S1063454111040091
- Sun, J., Amellal, F., Glass, L., Billete, J., 10.1006/jtbi.1995.0045, J. Theor. Biol. 173 (1995), 79-91. (1995) DOI10.1006/jtbi.1995.0045
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.