A variant of the reciprocal super Catalan matrix
Emrah Kılıç; Ilker Akkus; Gonca Kızılaslan
Special Matrices (2015)
- Volume: 3, Issue: 1, page 163-168, electronic only
- ISSN: 2300-7451
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J. E. Andersen and C. Berg, Quantum Hilbert matrices and orthogonal polynomials, math.CA:arXiv:math/0703546v1. Zbl1183.33034
- [2] M. D. Choi, Tricks or treats with the Hilbert matrix, Amer. Math. Monthly 90 (5) (1983), 301–312. Zbl0546.47007
- [3] D. Hilbert, Ein Beitrag zur Theorie des Legendreschen Polynoms, Acta Math. 18 (1894), 155–159. (367–370 in “Gesammelte Abhandlungen II”, Berlin 1933.) [Crossref]
- [4] E. Kılıç and H. Prodinger, The q-Pilbert matrix, Inter. J. Computer Math., 89 (10) (2012), 1370–1377. Zbl1290.11026
- [5] E. Kılıç and H. Prodinger, Variants of the Filbert matrix, The Fibonacci Quarterly 51(2) (2013), 153–162. Zbl1306.11019
- [6] V. Y. Pan, Structured matrices and polynomials, Birkhauser Boston, Inc., Boston, MA, Springer-Verlag, New York, 2001.
- [7] M. Petkovsek, H. Wilf, and D. Zeilberger, A = B, A.K. Peters, Ltd., 1996.
- [8] H. Prodinger, The reciprocal super Catalan matrix, Special Matrices 3 (2015), 111–117 Zbl1321.15027
- [9] T. M. Richardson, The Filbert matrix, The Fibonacci Quarterly 39 (3) (2001), 268–275. Zbl0994.11011
- [10] T. M. Richardson. The reciprocal Pascal matrix, ArXiv:1405.6315, 2014.
- [11] A. Riese, A Mathematica q-analogue of Zeilberger’s algorithm for proving q-hypergeometric identities, Diploma Thesis, RISC, J. Kepler University, Linz, Austria, 1995.
- [12] A. Riese, http://www.risc.uni-linz.ac.at/research/combinat/software/qZeil/index.php.