The reciprocal super Catalan matrix
Special Matrices (2015)
- Volume: 3, Issue: 1, page 111-117, electronic only
- ISSN: 2300-7451
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Emily Allen and Irina Gheorghiciuc, A weighted interpretation for the super catalan numbers, arXiv:1403.5246v2 [math.CO], 2014. Zbl1309.05017
- [2] Man Duen Choi, Tricks or treats with the Hilbert matrix, Amer. Math. Monthly 90 (1983), no.5, 301–312. Zbl0546.47007
- [3] I. M. Gessel, Super ballot numbers, J. Symbolic Computation 14 (1992), 179–194. [Crossref] Zbl0754.05002
- [4] I. M. Gessel and G. Xin, A combinatorial interpretation of the numbers 6(2n)!/n!(n + 2)!, J. Integer Seq. 8 (2005), Article 05.2.3.
- [5] Emrah Kiliç and Helmut Prodinger, Variants of the Filbert matrix, Fibonacci Quart. 51 (2013), no.2, 153–162.
- [6] Victor Y. Pan, Structured matrices and polynomials, Birkhäuser Boston, Inc., Boston, MA; Springer-Verlag, New York, 2001.
- [7] M. Petkovšek, H. Wilf, and D. Zeilberger, A = B, A.K. Peters, Ltd., 1996.
- [8] N. Pippenger and K. Schleich, Topological characteristics of random triangulated surfaces, Random Structures Algorithms 28 (2006), 247–288. Zbl1145.52009
- [9] T. M. Richardson, The reciprocal Pascal matrix, math.CO:arXiv:1405.6315, 2014.
- [10] Thomas M. Richardson, The Filbert matrix, Fibonacci Quart. 39 (2001), no.3, 268-275. Zbl0994.11011
- [11] Gilles Schaeffer, A combinatorial interpretation of super-Catalan numbers of order two, http://www.lix.polytechnique.fr/ ~schaeffe/Biblio/Slides/SLC54.pdf.