The reciprocal super Catalan matrix
Special Matrices (2015)
- Volume: 3, Issue: 1, page 111-117, electronic only
- ISSN: 2300-7451
Access Full Article
topAbstract
topHow to cite
topHelmut Prodinger. "The reciprocal super Catalan matrix." Special Matrices 3.1 (2015): 111-117, electronic only. <http://eudml.org/doc/270974>.
@article{HelmutProdinger2015,
abstract = {The reciprocal super Catalan matrix has entries [...] . Explicit formulæ for its LU-decomposition, the LU-decomposition of its inverse, and some related matrices are obtained. For all results, q-analogues are also presented.},
author = {Helmut Prodinger},
journal = {Special Matrices},
keywords = {Super Catalan numbers; LU-decomposition; q-analogues; super Catalan numbers; -analogues; super Catalan matrix},
language = {eng},
number = {1},
pages = {111-117, electronic only},
title = {The reciprocal super Catalan matrix},
url = {http://eudml.org/doc/270974},
volume = {3},
year = {2015},
}
TY - JOUR
AU - Helmut Prodinger
TI - The reciprocal super Catalan matrix
JO - Special Matrices
PY - 2015
VL - 3
IS - 1
SP - 111
EP - 117, electronic only
AB - The reciprocal super Catalan matrix has entries [...] . Explicit formulæ for its LU-decomposition, the LU-decomposition of its inverse, and some related matrices are obtained. For all results, q-analogues are also presented.
LA - eng
KW - Super Catalan numbers; LU-decomposition; q-analogues; super Catalan numbers; -analogues; super Catalan matrix
UR - http://eudml.org/doc/270974
ER -
References
top- [1] Emily Allen and Irina Gheorghiciuc, A weighted interpretation for the super catalan numbers, arXiv:1403.5246v2 [math.CO], 2014. Zbl1309.05017
- [2] Man Duen Choi, Tricks or treats with the Hilbert matrix, Amer. Math. Monthly 90 (1983), no.5, 301–312. Zbl0546.47007
- [3] I. M. Gessel, Super ballot numbers, J. Symbolic Computation 14 (1992), 179–194. [Crossref] Zbl0754.05002
- [4] I. M. Gessel and G. Xin, A combinatorial interpretation of the numbers 6(2n)!/n!(n + 2)!, J. Integer Seq. 8 (2005), Article 05.2.3.
- [5] Emrah Kiliç and Helmut Prodinger, Variants of the Filbert matrix, Fibonacci Quart. 51 (2013), no.2, 153–162.
- [6] Victor Y. Pan, Structured matrices and polynomials, Birkhäuser Boston, Inc., Boston, MA; Springer-Verlag, New York, 2001.
- [7] M. Petkovšek, H. Wilf, and D. Zeilberger, A = B, A.K. Peters, Ltd., 1996.
- [8] N. Pippenger and K. Schleich, Topological characteristics of random triangulated surfaces, Random Structures Algorithms 28 (2006), 247–288. Zbl1145.52009
- [9] T. M. Richardson, The reciprocal Pascal matrix, math.CO:arXiv:1405.6315, 2014.
- [10] Thomas M. Richardson, The Filbert matrix, Fibonacci Quart. 39 (2001), no.3, 268-275. Zbl0994.11011
- [11] Gilles Schaeffer, A combinatorial interpretation of super-Catalan numbers of order two, http://www.lix.polytechnique.fr/ ~schaeffe/Biblio/Slides/SLC54.pdf.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.