Migrativity properties of 2-uninorms over semi-t-operators
Kybernetika (2022)
- Volume: 58, Issue: 3, page 354-375
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topLi-Jun, Ying, and Feng, Qin. "Migrativity properties of 2-uninorms over semi-t-operators." Kybernetika 58.3 (2022): 354-375. <http://eudml.org/doc/298903>.
@article{Li2022,
abstract = {In this paper, we analyze and characterize all solutions about $\alpha $-migrativity properties of the five subclasses of 2-uninorms, i. e. $C^\{k\}$, $C^\{0\}_\{k\}$, $C^\{1\}_\{k\}$, $C^\{0\}_\{1\}$, $C^\{1\}_\{0\}$, over semi-t-operators. We give the sufficient and necessary conditions that make these $\alpha $-migrativity equations hold for all possible combinations of 2-uninorms over semi-t-operators. The results obtained show that for $G\in C^\{k\}$, the $\alpha $-migrativity of $G$ over a semi-t-operator $F_\{\mu ,\nu \}$ is closely related to the $\alpha $-section of $F_\{\mu ,\nu \}$ or the ordinal sum representation of t-norm and t-conorm corresponding to $F_\{\mu ,\nu \}$. But for the other four categories, the $\alpha $-migrativity over a semi-t-operator $F_\{\mu ,\nu \}$ is fully determined by the $\alpha $-section of $F_\{\mu ,\nu \}$.},
author = {Li-Jun, Ying, Feng, Qin},
journal = {Kybernetika},
keywords = {2-uninorms; uninorms; semi-t-operators; triangular norms; triangular conorms},
language = {eng},
number = {3},
pages = {354-375},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Migrativity properties of 2-uninorms over semi-t-operators},
url = {http://eudml.org/doc/298903},
volume = {58},
year = {2022},
}
TY - JOUR
AU - Li-Jun, Ying
AU - Feng, Qin
TI - Migrativity properties of 2-uninorms over semi-t-operators
JO - Kybernetika
PY - 2022
PB - Institute of Information Theory and Automation AS CR
VL - 58
IS - 3
SP - 354
EP - 375
AB - In this paper, we analyze and characterize all solutions about $\alpha $-migrativity properties of the five subclasses of 2-uninorms, i. e. $C^{k}$, $C^{0}_{k}$, $C^{1}_{k}$, $C^{0}_{1}$, $C^{1}_{0}$, over semi-t-operators. We give the sufficient and necessary conditions that make these $\alpha $-migrativity equations hold for all possible combinations of 2-uninorms over semi-t-operators. The results obtained show that for $G\in C^{k}$, the $\alpha $-migrativity of $G$ over a semi-t-operator $F_{\mu ,\nu }$ is closely related to the $\alpha $-section of $F_{\mu ,\nu }$ or the ordinal sum representation of t-norm and t-conorm corresponding to $F_{\mu ,\nu }$. But for the other four categories, the $\alpha $-migrativity over a semi-t-operator $F_{\mu ,\nu }$ is fully determined by the $\alpha $-section of $F_{\mu ,\nu }$.
LA - eng
KW - 2-uninorms; uninorms; semi-t-operators; triangular norms; triangular conorms
UR - http://eudml.org/doc/298903
ER -
References
top- Alsina, C., Schweizer, B., Frank, M. J., Associative Functions: Triangular Norms and Copulas., World Scientific, 2006. MR2222258
- Akella, P., , Fuzzy Sets Syst. 158 (2007), 1631-1651. MR2341328DOI
- Baets, B. De, , Eur. J. Oper. Res. 118 (1999), 631-642. Zbl1178.03070DOI
- Beliakov, G., Pradera, A., Calvo, T., Aggregation Functions: A Guide for Practioners., Springer-Verlag, Berlin-Heidelberg 2007.
- Bustince, H., Baets, B. De, Fernandez, J., Mesiar, R., Montero, J., , Inf. Sci. 191 (2012), 76-85. MR2897134DOI
- Calvo, T., Mayor, G., (Eds.), R. Mesiar, Aggregation Operators: New Trends and Applications., Physica-Verlag, Heidelberg, 2002. Zbl0983.00020MR2015161
- Durante, F., Sarkoci, P., , Fuzzy Sets Syst. 159 (2008), 77-80. MR2371304DOI
- Drygaś, P., , Fuzzy Sets Syst. 264 (2015), 100-109. MR3303666DOI
- Fodor, J. C., Yager, R. R., Rybalov, A., , Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 5 (1997), 411-427. Zbl1232.03015MR1471619DOI
- Fodor, J. C., Rudas, I. J., , Fuzzy Sets Syst. 168 (2011), 70-80. MR2772621DOI
- Hu, S. K., Li, Z. F., , Fuzzy Sets Syst. 124 (2001), 43-52. MR1859776DOI
- Klement, E. P., Mesiar, R., Pap, E., , Kluwer, Dordrecht 2000. Zbl1087.20041MR1790096DOI
- Li, G., Liu, H. W., Fodor, J. C., , Kybernetika. 51 (2015), 699-711. MR3423195DOI
- Li, W. H., Qin, F., , Fuzzy Sets Syst. 414 (2021), 115-134. MR4251549DOI
- Li, W. H., Qin, F., Zhao, Y. Y., , Fuzzy Sets Syst. 386 (2020), 36-47. MR4073389DOI
- Mesiar, R., Novák, V., Open problems., Tatra Mt. Math. Publ. 6 (1995), 195-204. MR1363991
- Mesiar, R., Novák, V., , Fuzzy Sets Syst. 81 (1996), 185-190. MR1392780DOI
- Mesiar, R., Bustince, H., Fernandez, J., , Inf. Sci. 180 (2010), 1967-1976. MR2596346DOI
- Mesiarová-Zemánková, A., , Fuzzy Sets Syst. 427 (2022), 1-22. MR4343686DOI
- Mesiarová-Zemánková, A., , IEEE Trans. Fuzzy Syst. 30 (2022), 5, 1239-1247. DOI
- Mesiarová-Zemánková, A., , Int. J. General Syst. 50 (2020), 92-116. MR4210904DOI
- Mesiarová-Zemánková, A., , Int. J. Approx. Reason. 133 (2021), 60-79. MR4238981DOI
- Mas, M., Monserrat, M., Ruiz-Aguilera, D., Torrens, J., , Inf. Sci. 246 (2013), 191-198. MR3073028DOI
- Mas, M., Mayor, G., Torrens, J., , Int. J. Uncertain. Fuzziness Knowl.-based Syst. 7 (1999), 31-50. MR1691482DOI
- Mas, M., Mayor, G., Torrens, J., , Fuzzy Sets Syst. 126 (2002), 207-218. MR1884687DOI
- Mas, M., Monserat, M., Ruiz-Aguilera, D., Torrens, J., , In: Aggregation Functions in Theory and in Practise (H. Bustince, J. Fernandez, R. Mesiar and T. Calvo, eds.), Springer Berlin, Heidelberg, pp. 155-166, 2013. MR3588171DOI
- Mas, M., Monserat, M., Ruiz-Aguilera, D., Torrens, J., , Fuzzy Sets Syst. 261 (2015), 20-32. MR3291483DOI
- Ouyang, Y., Fang, J. X., , Inf. Sci. 178 (2008), 4396-4402. MR2459859DOI
- Ouyang, Y., Fang, J. X., Li, G. L., , Inf. Sci. 178 (2007), 2945-2953. MR2333447DOI
- Qin, F., Ruiz-Aguilera, D., , Int. J. Uncertain. Fuzziness Knowl.-based Syst. 23 (2015), 105-115. MR3312783DOI
- Ruiz, D., Torrens, J., Residual implications and co-implications from idempotent uninorms., Kybernetika 40 (2004), 21-38. Zbl1249.94095MR2068596
- Su, Y., Zong, W., Liu, H. W., Xue, P., , Inf. Sci. 325 (2015), 455-465. MR3392314DOI
- Su, Y., Zong, W., Drygaś, P., , Fuzzy Sets Syst. 357 (2019), 47-57. MR3913058DOI
- Wang, Y. M., Qin, F., , Int. J. Uncertain. Fuzziness Knowl.-based Syst. 25 (2017), 317-345. MR3631939DOI
- Wang, Y. M., Zong, W. W., Zhan, H., Liu, H. W., , Int. J. Uncertain. Fuzziness Knowl.-based Syst. 27 (2019), 303-328. MR3934799DOI
- Wang, Y. M., Liu, H. W., , Kybernetika 55 (2019), 24-43. MR3935413DOI
- Zong, W. W., Su, Y., Liu, H. W., Baets, B. D., , Inf. Sci. 467 (2018), 506-527. MR3851580DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.