Migrativity properties of 2-uninorms over semi-t-operators

Ying Li-Jun; Qin Feng

Kybernetika (2022)

  • Volume: 58, Issue: 3, page 354-375
  • ISSN: 0023-5954

Abstract

top
In this paper, we analyze and characterize all solutions about α -migrativity properties of the five subclasses of 2-uninorms, i. e. C k , C k 0 , C k 1 , C 1 0 , C 0 1 , over semi-t-operators. We give the sufficient and necessary conditions that make these α -migrativity equations hold for all possible combinations of 2-uninorms over semi-t-operators. The results obtained show that for G C k , the α -migrativity of G over a semi-t-operator F μ , ν is closely related to the α -section of F μ , ν or the ordinal sum representation of t-norm and t-conorm corresponding to F μ , ν . But for the other four categories, the α -migrativity over a semi-t-operator F μ , ν is fully determined by the α -section of F μ , ν .

How to cite

top

Li-Jun, Ying, and Feng, Qin. "Migrativity properties of 2-uninorms over semi-t-operators." Kybernetika 58.3 (2022): 354-375. <http://eudml.org/doc/298903>.

@article{Li2022,
abstract = {In this paper, we analyze and characterize all solutions about $\alpha $-migrativity properties of the five subclasses of 2-uninorms, i. e. $C^\{k\}$, $C^\{0\}_\{k\}$, $C^\{1\}_\{k\}$, $C^\{0\}_\{1\}$, $C^\{1\}_\{0\}$, over semi-t-operators. We give the sufficient and necessary conditions that make these $\alpha $-migrativity equations hold for all possible combinations of 2-uninorms over semi-t-operators. The results obtained show that for $G\in C^\{k\}$, the $\alpha $-migrativity of $G$ over a semi-t-operator $F_\{\mu ,\nu \}$ is closely related to the $\alpha $-section of $F_\{\mu ,\nu \}$ or the ordinal sum representation of t-norm and t-conorm corresponding to $F_\{\mu ,\nu \}$. But for the other four categories, the $\alpha $-migrativity over a semi-t-operator $F_\{\mu ,\nu \}$ is fully determined by the $\alpha $-section of $F_\{\mu ,\nu \}$.},
author = {Li-Jun, Ying, Feng, Qin},
journal = {Kybernetika},
keywords = {2-uninorms; uninorms; semi-t-operators; triangular norms; triangular conorms},
language = {eng},
number = {3},
pages = {354-375},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Migrativity properties of 2-uninorms over semi-t-operators},
url = {http://eudml.org/doc/298903},
volume = {58},
year = {2022},
}

TY - JOUR
AU - Li-Jun, Ying
AU - Feng, Qin
TI - Migrativity properties of 2-uninorms over semi-t-operators
JO - Kybernetika
PY - 2022
PB - Institute of Information Theory and Automation AS CR
VL - 58
IS - 3
SP - 354
EP - 375
AB - In this paper, we analyze and characterize all solutions about $\alpha $-migrativity properties of the five subclasses of 2-uninorms, i. e. $C^{k}$, $C^{0}_{k}$, $C^{1}_{k}$, $C^{0}_{1}$, $C^{1}_{0}$, over semi-t-operators. We give the sufficient and necessary conditions that make these $\alpha $-migrativity equations hold for all possible combinations of 2-uninorms over semi-t-operators. The results obtained show that for $G\in C^{k}$, the $\alpha $-migrativity of $G$ over a semi-t-operator $F_{\mu ,\nu }$ is closely related to the $\alpha $-section of $F_{\mu ,\nu }$ or the ordinal sum representation of t-norm and t-conorm corresponding to $F_{\mu ,\nu }$. But for the other four categories, the $\alpha $-migrativity over a semi-t-operator $F_{\mu ,\nu }$ is fully determined by the $\alpha $-section of $F_{\mu ,\nu }$.
LA - eng
KW - 2-uninorms; uninorms; semi-t-operators; triangular norms; triangular conorms
UR - http://eudml.org/doc/298903
ER -

References

top
  1. Alsina, C., Schweizer, B., Frank, M. J., Associative Functions: Triangular Norms and Copulas., World Scientific, 2006. MR2222258
  2. Akella, P., , Fuzzy Sets Syst. 158 (2007), 1631-1651. MR2341328DOI
  3. Baets, B. De, , Eur. J. Oper. Res. 118 (1999), 631-642. Zbl1178.03070DOI
  4. Beliakov, G., Pradera, A., Calvo, T., Aggregation Functions: A Guide for Practioners., Springer-Verlag, Berlin-Heidelberg 2007. 
  5. Bustince, H., Baets, B. De, Fernandez, J., Mesiar, R., Montero, J., , Inf. Sci. 191 (2012), 76-85. MR2897134DOI
  6. Calvo, T., Mayor, G., (Eds.), R. Mesiar, Aggregation Operators: New Trends and Applications., Physica-Verlag, Heidelberg, 2002. Zbl0983.00020MR2015161
  7. Durante, F., Sarkoci, P., , Fuzzy Sets Syst. 159 (2008), 77-80. MR2371304DOI
  8. Drygaś, P., , Fuzzy Sets Syst. 264 (2015), 100-109. MR3303666DOI
  9. Fodor, J. C., Yager, R. R., Rybalov, A., , Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 5 (1997), 411-427. Zbl1232.03015MR1471619DOI
  10. Fodor, J. C., Rudas, I. J., , Fuzzy Sets Syst. 168 (2011), 70-80. MR2772621DOI
  11. Hu, S. K., Li, Z. F., , Fuzzy Sets Syst. 124 (2001), 43-52. MR1859776DOI
  12. Klement, E. P., Mesiar, R., Pap, E., , Kluwer, Dordrecht 2000. Zbl1087.20041MR1790096DOI
  13. Li, G., Liu, H. W., Fodor, J. C., , Kybernetika. 51 (2015), 699-711. MR3423195DOI
  14. Li, W. H., Qin, F., , Fuzzy Sets Syst. 414 (2021), 115-134. MR4251549DOI
  15. Li, W. H., Qin, F., Zhao, Y. Y., , Fuzzy Sets Syst. 386 (2020), 36-47. MR4073389DOI
  16. Mesiar, R., Novák, V., Open problems., Tatra Mt. Math. Publ. 6 (1995), 195-204. MR1363991
  17. Mesiar, R., Novák, V., , Fuzzy Sets Syst. 81 (1996), 185-190. MR1392780DOI
  18. Mesiar, R., Bustince, H., Fernandez, J., , Inf. Sci. 180 (2010), 1967-1976. MR2596346DOI
  19. Mesiarová-Zemánková, A., , Fuzzy Sets Syst. 427 (2022), 1-22. MR4343686DOI
  20. Mesiarová-Zemánková, A., , IEEE Trans. Fuzzy Syst. 30 (2022), 5, 1239-1247. DOI
  21. Mesiarová-Zemánková, A., , Int. J. General Syst. 50 (2020), 92-116. MR4210904DOI
  22. Mesiarová-Zemánková, A., , Int. J. Approx. Reason. 133 (2021), 60-79. MR4238981DOI
  23. Mas, M., Monserrat, M., Ruiz-Aguilera, D., Torrens, J., , Inf. Sci. 246 (2013), 191-198. MR3073028DOI
  24. Mas, M., Mayor, G., Torrens, J., , Int. J. Uncertain. Fuzziness Knowl.-based Syst. 7 (1999), 31-50. MR1691482DOI
  25. Mas, M., Mayor, G., Torrens, J., , Fuzzy Sets Syst. 126 (2002), 207-218. MR1884687DOI
  26. Mas, M., Monserat, M., Ruiz-Aguilera, D., Torrens, J., , In: Aggregation Functions in Theory and in Practise (H. Bustince, J. Fernandez, R. Mesiar and T. Calvo, eds.), Springer Berlin, Heidelberg, pp. 155-166, 2013. MR3588171DOI
  27. Mas, M., Monserat, M., Ruiz-Aguilera, D., Torrens, J., , Fuzzy Sets Syst. 261 (2015), 20-32. MR3291483DOI
  28. Ouyang, Y., Fang, J. X., , Inf. Sci. 178 (2008), 4396-4402. MR2459859DOI
  29. Ouyang, Y., Fang, J. X., Li, G. L., , Inf. Sci. 178 (2007), 2945-2953. MR2333447DOI
  30. Qin, F., Ruiz-Aguilera, D., , Int. J. Uncertain. Fuzziness Knowl.-based Syst. 23 (2015), 105-115. MR3312783DOI
  31. Ruiz, D., Torrens, J., Residual implications and co-implications from idempotent uninorms., Kybernetika 40 (2004), 21-38. Zbl1249.94095MR2068596
  32. Su, Y., Zong, W., Liu, H. W., Xue, P., , Inf. Sci. 325 (2015), 455-465. MR3392314DOI
  33. Su, Y., Zong, W., Drygaś, P., , Fuzzy Sets Syst. 357 (2019), 47-57. MR3913058DOI
  34. Wang, Y. M., Qin, F., , Int. J. Uncertain. Fuzziness Knowl.-based Syst. 25 (2017), 317-345. MR3631939DOI
  35. Wang, Y. M., Zong, W. W., Zhan, H., Liu, H. W., , Int. J. Uncertain. Fuzziness Knowl.-based Syst. 27 (2019), 303-328. MR3934799DOI
  36. Wang, Y. M., Liu, H. W., , Kybernetika 55 (2019), 24-43. MR3935413DOI
  37. Zong, W. W., Su, Y., Liu, H. W., Baets, B. D., , Inf. Sci. 467 (2018), 506-527. MR3851580DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.