A note on solvable vertex stabilizers of -transitive graphs of prime valency
Song-Tao Guo; Hailong Hou; Yong Xu
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 3, page 781-785
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGuo, Song-Tao, Hou, Hailong, and Xu, Yong. "A note on solvable vertex stabilizers of $s$-transitive graphs of prime valency." Czechoslovak Mathematical Journal 65.3 (2015): 781-785. <http://eudml.org/doc/271813>.
@article{Guo2015,
abstract = {A graph $X$, with a group $G$ of automorphisms of $X$, is said to be $(G,s)$-transitive, for some $s\ge 1$, if $G$ is transitive on $s$-arcs but not on $(s+1)$-arcs. Let $X$ be a connected $(G,s)$-transitive graph of prime valency $p\ge 5$, and $G_v$ the vertex stabilizer of a vertex $v\in V(X)$. Suppose that $G_v$ is solvable. Weiss (1974) proved that $|G_v|\mid p(p-1)^2$. In this paper, we prove that $G_v\cong (\mathbb \{Z\}_p\rtimes \mathbb \{Z\}_m)\times \mathbb \{Z\}_n$ for some positive integers $m$ and $n$ such that $n\operatorname\{div\}m$ and $m\mid p-1$.},
author = {Guo, Song-Tao, Hou, Hailong, Xu, Yong},
journal = {Czechoslovak Mathematical Journal},
keywords = {symmetric graph; $s$-transitive graph; $(G,s)$-transitive graph},
language = {eng},
number = {3},
pages = {781-785},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on solvable vertex stabilizers of $s$-transitive graphs of prime valency},
url = {http://eudml.org/doc/271813},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Guo, Song-Tao
AU - Hou, Hailong
AU - Xu, Yong
TI - A note on solvable vertex stabilizers of $s$-transitive graphs of prime valency
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 3
SP - 781
EP - 785
AB - A graph $X$, with a group $G$ of automorphisms of $X$, is said to be $(G,s)$-transitive, for some $s\ge 1$, if $G$ is transitive on $s$-arcs but not on $(s+1)$-arcs. Let $X$ be a connected $(G,s)$-transitive graph of prime valency $p\ge 5$, and $G_v$ the vertex stabilizer of a vertex $v\in V(X)$. Suppose that $G_v$ is solvable. Weiss (1974) proved that $|G_v|\mid p(p-1)^2$. In this paper, we prove that $G_v\cong (\mathbb {Z}_p\rtimes \mathbb {Z}_m)\times \mathbb {Z}_n$ for some positive integers $m$ and $n$ such that $n\operatorname{div}m$ and $m\mid p-1$.
LA - eng
KW - symmetric graph; $s$-transitive graph; $(G,s)$-transitive graph
UR - http://eudml.org/doc/271813
ER -
References
top- Conder, M., Dobcsányi, P., Trivalent symmetric graphs on up to 768 vertices, J. Comb. Math. Comb. Comput. 40 (2002), 41-63. (2002) Zbl0996.05069MR1887966
- Dixon, J. D., Mortimer, B., Permutation Groups, Graduate Texts in Mathematics 163 Springer, New York (1996). (1996) Zbl0951.20001MR1409812
- Djoković, D. Ž., 10.2307/2042139, Proc. Am. Math. Soc. 80 (1980), 22-26. (1980) Zbl0441.20015MR0574502DOI10.2307/2042139
- Djoković, D. Ž., Miller, G. L., 10.1016/0095-8956(80)90081-7, J. Comb. Theory, Ser. B 29 (1980), 195-230. (1980) Zbl0385.05040MR0586434DOI10.1016/0095-8956(80)90081-7
- Feng, Y.-Q., Kwak, J. H., 10.1016/j.jctb.2006.11.001, J. Comb. Theory, Ser. B 97 (2007), 627-646. (2007) Zbl1118.05043MR2325802DOI10.1016/j.jctb.2006.11.001
- Guo, S.-T., Feng, Y.-Q., 10.1016/j.disc.2012.04.015, Discrete Math. 312 (2012), 2214-2216. (2012) Zbl1246.05105MR2926093DOI10.1016/j.disc.2012.04.015
- Huppert, B., 10.1007/978-3-642-64981-3, Die Grundlehren der Mathematischen Wissenschaften 134 Springer, Berlin German (1967). (1967) Zbl0217.07201MR0224703DOI10.1007/978-3-642-64981-3
- Potočnik, P., 10.1016/j.ejc.2008.10.001, Eur. J. Comb. 30 (2009), 1323-1336. (2009) Zbl1208.05056MR2514656DOI10.1016/j.ejc.2008.10.001
- Weiss, R., 10.1017/S0305004100066378, Math. Proc. Camb. Philos. Soc. 101 (1987), 7-20. (1987) MR0877697DOI10.1017/S0305004100066378
- Weiss, R., -transitive graphs, Colloq. Math. Soc. János Bolyai 25 North-Holland, Amsterdam (1981), 827-847. Algebraic Methods in Graph Theory, Vol. II L. Lovász et al.; Conf. Szeged, 1978 (1981) Zbl0475.05040MR0642075
- Weiss, R., 10.1017/S030500410005547X, Math. Proc. Camb. Philos. Soc. 85 (1979), 43-48. (1979) Zbl0392.20002MR0510398DOI10.1017/S030500410005547X
- Weiss, R., 10.1017/S0027763000018420, Nagoya Math. J. 74 (1979), 1-21. (1979) Zbl0381.20004MR0535958DOI10.1017/S0027763000018420
- Weiss, R. M., Über symmetrische Graphen, deren Valenz eine Primzahl ist, Math. Z. 136 German (1974), 277-278. (1974) Zbl0268.05110MR0360348
- Wielandt, H., Finite Permutation Groups, Academic Press New York (1964). (1964) Zbl0138.02501MR0183775
- Zhou, J.-X., Feng, Y.-Q., 10.1016/j.disc.2009.11.019, Discrete Math. 310 (2010), 1725-1732. (2010) Zbl1225.05131MR2610275DOI10.1016/j.disc.2009.11.019
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.