Displaying similar documents to “A note on solvable vertex stabilizers of s -transitive graphs of prime valency”

The small Ree group 2 G 2 ( 3 2 n + 1 ) and related graph

Alireza K. Asboei, Seyed S. S. Amiri (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let G be a finite group. The main supergraph 𝒮 ( G ) is a graph with vertex set G in which two vertices x and y are adjacent if and only if o ( x ) o ( y ) or o ( y ) o ( x ) . In this paper, we will show that G 2 G 2 ( 3 2 n + 1 ) if and only if 𝒮 ( G ) 𝒮 ( 2 G 2 ( 3 2 n + 1 ) ) . As a main consequence of our result we conclude that Thompson’s problem is true for the small Ree group 2 G 2 ( 3 2 n + 1 ) .

Recognizability of finite groups by Suzuki group

Alireza Khalili Asboei, Seyed Sadegh Salehi Amiri (2019)

Archivum Mathematicum

Similarity:

Let G be a finite group. The main supergraph 𝒮 ( G ) is a graph with vertex set G in which two vertices x and y are adjacent if and only if o ( x ) o ( y ) or o ( y ) o ( x ) . In this paper, we will show that G S z ( q ) if and only if 𝒮 ( G ) 𝒮 ( S z ( q ) ) , where q = 2 2 m + 1 8 .

The Turán number of the graph 3 P 4

Halina Bielak, Sebastian Kieliszek (2014)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let e x ( n , G ) denote the maximum number of edges in a graph on n vertices which does not contain G as a subgraph. Let P i denote a path consisting of i vertices and let m P i denote m disjoint copies of P i . In this paper we count e x ( n , 3 P 4 ) .

A new characterization of symmetric group by NSE

Azam Babai, Zeinab Akhlaghi (2017)

Czechoslovak Mathematical Journal

Similarity:

Let G be a group and ω ( G ) be the set of element orders of G . Let k ω ( G ) and m k ( G ) be the number of elements of order k in G . Let nse ( G ) = { m k ( G ) : k ω ( G ) } . Assume r is a prime number and let G be a group such that nse ( G ) = nse ( S r ) , where S r is the symmetric group of degree r . In this paper we prove that G S r , if r divides the order of G and r 2 does not divide it. To get the conclusion we make use of some well-known results on the prime graphs of finite simple groups and their components.

Characterizing finite groups whose enhanced power graphs have universal vertices

David G. Costanzo, Mark L. Lewis, Stefano Schmidt, Eyob Tsegaye, Gabe Udell (2024)

Czechoslovak Mathematical Journal

Similarity:

Let G be a finite group and construct a graph Δ ( G ) by taking G { 1 } as the vertex set of Δ ( G ) and by drawing an edge between two vertices x and y if x , y is cyclic. Let K ( G ) be the set consisting of the universal vertices of Δ ( G ) along the identity element. For a solvable group G , we present a necessary and sufficient condition for K ( G ) to be nontrivial. We also develop a connection between Δ ( G ) and K ( G ) when | G | is divisible by two distinct primes and the diameter of Δ ( G ) is 2.

Even factor of bridgeless graphs containing two specified edges

Nastaran Haghparast, Dariush Kiani (2018)

Czechoslovak Mathematical Journal

Similarity:

An even factor of a graph is a spanning subgraph in which each vertex has a positive even degree. Let G be a bridgeless simple graph with minimum degree at least 3 . Jackson and Yoshimoto (2007) showed that G has an even factor containing two arbitrary prescribed edges. They also proved that G has an even factor in which each component has order at least four. Moreover, Xiong, Lu and Han (2009) showed that for each pair of edges e 1 and e 2 of G , there is an even factor containing e 1 and e 2 ...

Saturation numbers for linear forests P 6 + t P 2

Jingru Yan (2023)

Czechoslovak Mathematical Journal

Similarity:

A graph G is H -saturated if it contains no H as a subgraph, but does contain H after the addition of any edge in the complement of G . The saturation number, sat ( n , H ) , is the minimum number of edges of a graph in the set of all H -saturated graphs of order n . We determine the saturation number sat ( n , P 6 + t P 2 ) for n 10 3 t + 10 and characterize the extremal graphs for n > 10 3 t + 20 .

On path-quasar Ramsey numbers

Binlong Li, Bo Ning (2014)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let G 1 and G 2 be two given graphs. The Ramsey number R ( G 1 , G 2 ) is the least integer r such that for every graph G on r vertices, either G contains a G 1 or G ¯ contains a G 2 . Parsons gave a recursive formula to determine the values of R ( P n , K 1 , m ) , where P n is a path on n vertices and K 1 , m is a star on m + 1 vertices. In this note, we study the Ramsey numbers R ( P n , K 1 F m ) , where F m is a linear forest on m vertices. We determine the exact values of R ( P n , K 1 F m ) for the cases m n and m 2 n , and for the case that F m has no odd component. Moreover, we...

Several quantitative characterizations of some specific groups

A. Mohammadzadeh, Ali Reza Moghaddamfar (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let G be a finite group and let π ( G ) = { p 1 , p 2 , ... , p k } be the set of prime divisors of | G | for which p 1 < p 2 < < p k . The Gruenberg-Kegel graph of G , denoted GK ( G ) , is defined as follows: its vertex set is π ( G ) and two different vertices p i and p j are adjacent by an edge if and only if G contains an element of order p i p j . The degree of a vertex p i in GK ( G ) is denoted by d G ( p i ) and the k -tuple D ( G ) = ( d G ( p 1 ) , d G ( p 2 ) , ... , d G ( p k ) ) is said to be the degree pattern of G . Moreover, if ω π ( G ) is the vertex set of a connected component of GK ( G ) , then the largest ω -number which divides | G | , is...

On the recognizability of some projective general linear groups by the prime graph

Masoumeh Sajjadi (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let G be a finite group. The prime graph of G is a simple graph Γ ( G ) whose vertex set is π ( G ) and two distinct vertices p and q are joined by an edge if and only if G has an element of order p q . A group G is called k -recognizable by prime graph if there exist exactly k nonisomorphic groups H satisfying the condition Γ ( G ) = Γ ( H ) . A 1-recognizable group is usually called a recognizable group. In this problem, it was proved that PGL ( 2 , p α ) is recognizable, if p is an odd prime and α > 1 is odd. But for even α , only...

Some properties of generalized distance eigenvalues of graphs

Yuzheng Ma, Yan Ling Shao (2024)

Czechoslovak Mathematical Journal

Similarity:

Let G be a simple connected graph with vertex set V ( G ) = { v 1 , v 2 , , v n } and edge set E ( G ) , and let d v i be the degree of the vertex v i . Let D ( G ) be the distance matrix and let T r ( G ) be the diagonal matrix of the vertex transmissions of G . The generalized distance matrix of G is defined as D α ( G ) = α T r ( G ) + ( 1 - α ) D ( G ) , where 0 α 1 . Let λ 1 ( D α ( G ) ) λ 2 ( D α ( G ) ) ... λ n ( D α ( G ) ) be the generalized distance eigenvalues of G , and let k be an integer with 1 k n . We denote by S k ( D α ( G ) ) = λ 1 ( D α ( G ) ) + λ 2 ( D α ( G ) ) + ... + λ k ( D α ( G ) ) the sum of the k largest generalized distance eigenvalues. The generalized distance spread of a graph G is defined as D α S ( G ) = λ 1 ( D α ( G ) ) - λ n ( D α ( G ) ) ....