Anisotropic -adaptive method based on interpolation error estimates in the -seminorm
Applications of Mathematics (2015)
- Volume: 60, Issue: 6, page 597-616
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topDolejší, Vít. "Anisotropic $hp$-adaptive method based on interpolation error estimates in the $H^1$-seminorm." Applications of Mathematics 60.6 (2015): 597-616. <http://eudml.org/doc/271815>.
@article{Dolejší2015,
abstract = {We develop a new technique which, for the given smooth function, generates the anisotropic triangular grid and the corresponding polynomial approximation degrees based on the minimization of the interpolation error in the broken $H^1$-seminorm. This technique can be employed for the numerical solution of boundary value problems with the aid of finite element methods. We present the theoretical background of this approach and show several numerical examples demonstrating the efficiency of the proposed anisotropic adaptive strategy in comparison with other adaptive approaches.},
author = {Dolejší, Vít},
journal = {Applications of Mathematics},
keywords = {$hp$-methods; anisotropic mesh adaptation; interpolation error estimates; -methods; anisotropic mesh adaptation; interpolation error estimates},
language = {eng},
number = {6},
pages = {597-616},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Anisotropic $hp$-adaptive method based on interpolation error estimates in the $H^1$-seminorm},
url = {http://eudml.org/doc/271815},
volume = {60},
year = {2015},
}
TY - JOUR
AU - Dolejší, Vít
TI - Anisotropic $hp$-adaptive method based on interpolation error estimates in the $H^1$-seminorm
JO - Applications of Mathematics
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 6
SP - 597
EP - 616
AB - We develop a new technique which, for the given smooth function, generates the anisotropic triangular grid and the corresponding polynomial approximation degrees based on the minimization of the interpolation error in the broken $H^1$-seminorm. This technique can be employed for the numerical solution of boundary value problems with the aid of finite element methods. We present the theoretical background of this approach and show several numerical examples demonstrating the efficiency of the proposed anisotropic adaptive strategy in comparison with other adaptive approaches.
LA - eng
KW - $hp$-methods; anisotropic mesh adaptation; interpolation error estimates; -methods; anisotropic mesh adaptation; interpolation error estimates
UR - http://eudml.org/doc/271815
ER -
References
top- Ait-Ali-Yahia, D., Baruzzi, G., Habashi, W. G., Fortin, M., Dompierre, J., Vallet, M.-G., 10.1002/fld.356, Int. J. Numer. Methods Fluids 39 (2002), 657-673. (2002) Zbl1101.76350MR1911881DOI10.1002/fld.356
- Aubry, R., Löhner, R., 10.1002/nme.2446, Int. J. Numer. Methods Eng. 77 (2009), 1247-1289. (2009) Zbl1156.76432DOI10.1002/nme.2446
- Babuška, I., Suri, M., 10.1137/1036141, SIAM Rev. 36 (1994), 578-632. (1994) Zbl0813.65118MR1306924DOI10.1137/1036141
- Cao, W., 10.1137/050634700, SIAM J. Sci. Comput. 29 (2007), 756-781. (2007) Zbl1136.65100MR2306267DOI10.1137/050634700
- Cao, W., 10.1090/S0025-5718-07-01981-3, Math. Comput. 77 (2008), 265-286. (2008) Zbl1149.65010MR2353953DOI10.1090/S0025-5718-07-01981-3
- Clavero, C., Gracia, J. L., Jorge, J. C., 10.1093/imanum/dri029, IMA J. Numer. Anal. 26 (2006), 155-172. (2006) MR2193974DOI10.1093/imanum/dri029
- Dawson, C., Sun, S., Wheeler, M. F., 10.1016/j.cma.2003.12.059, Comput. Methods Appl. Mech. Eng. 193 (2004), 2565-2580. (2004) Zbl1067.76565MR2055253DOI10.1016/j.cma.2003.12.059
- Demkowicz, L., Rachowicz, W., Devloo, P., 10.1023/A:1015192312705, J. Sci. Comput. 17 (2002), 117-142. (2002) Zbl0999.65121MR1910555DOI10.1023/A:1015192312705
- Dolejší, V., 10.1007/s007910050015, Comput. Vis. Sci. 1 (1998), 165-178. (1998) Zbl0917.68214MR1839196DOI10.1007/s007910050015
- Dolejší, V., ANGENER---software package, Charles University Prague, Faculty of Mathematics and Physics, 2000. www.karlin.mff.cuni.cz/ {dolejsi/angen/angen.htm}.
- Dolejší, V., 10.1016/j.cam.2007.10.055, J. Comput. Appl. Math. 222 (2008), 251-273. (2008) Zbl1165.65055MR2474628DOI10.1016/j.cam.2007.10.055
- Dolejší, V., 10.1016/j.matcom.2013.03.001, Math. Comput. Simul. 87 (2013), 87-118. (2013) MR3046879DOI10.1016/j.matcom.2013.03.001
- Dolejší, V., 10.1016/j.apnum.2014.03.003, Appl. Numer. Math. 82 (2014), 80-114. (2014) Zbl1291.65340MR3212381DOI10.1016/j.apnum.2014.03.003
- Dolejší, V., Felcman, J., 10.1002/num.10104, Numer. Methods Partial Differ. Equations 20 (2004), 576-608. (2004) Zbl1060.65125MR2060780DOI10.1002/num.10104
- Dolejší, V., Roos, H.-G., BDF-FEM for parabolic singularly perturbed problems with exponential layers on layers-adapted meshes in space, Neural Parallel Sci. Comput. 18 (2010), 221-235. (2010) MR2722205
- Frey, P. J., Alauzet, F., 10.1016/j.cma.2004.11.025, Comput. Methods Appl. Mech. Eng. 194 (2005), 5068-5082. (2005) Zbl1092.76054MR2163554DOI10.1016/j.cma.2004.11.025
- John, V., Knobloch, P., 10.1016/j.cma.2006.11.013, Comput. Methods Appl. Mech. Eng. 196 (2007), 2197-2215. (2007) Zbl1173.76342MR2302890DOI10.1016/j.cma.2006.11.013
- Knopp, T., Lube, G., Rapin, G., 10.1016/S0045-7825(02)00222-0, Comput. Methods Appl. Mech. Eng. 191 (2002), 2997-3013. (2002) Zbl1001.76058MR1903196DOI10.1016/S0045-7825(02)00222-0
- Laug, P., Borouchaki, H., BL2D-V2: isotropic or anisotropic 2D mesher. INRIA, 2002. https://www.rocq.inria.fr/gamma/Patrick.Laug/logiciels/bl2d-v2/INDEX.html, .
- Loseille, A., Alauzet, F., 10.1137/090754078, SIAM J. Numer. Anal. 49 (2011), 38-60. (2011) MR2764420DOI10.1137/090754078
- Loseille, A., Alauzet, F., 10.1137/10078654X, SIAM J. Numer. Anal. 49 (2011), 61-86. (2011) MR2764421DOI10.1137/10078654X
- Mirebeau, J.-M., 10.1007/s00365-010-9090-y, Constr. Approx. 32 (2010), 339-383. (2010) Zbl1202.65015MR2677884DOI10.1007/s00365-010-9090-y
- Mirebeau, J.-M., 10.1007/s00211-011-0412-1, Numer. Math. 120 (2012), 271-305. (2012) Zbl1238.65116MR2874967DOI10.1007/s00211-011-0412-1
- Schwab, C., - and -Finite Element Methods. Theory and Applications in Solid and Fluid Mechanics, Numerical Mathematics and Scientific Computation Clarendon Press, Oxford (1998). (1998) Zbl0910.73003MR1695813
- Šolín, P., Partial Differential Equations and the Finite Element Method, Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts John Wiley & Sons, Hoboken (2006). (2006) MR2180081
- Šolín, P., Demkowicz, L., 10.1016/j.cma.2003.09.015, Comput. Methods Appl. Mech. Eng. 193 (2004), 449-468. (2004) Zbl1044.65082MR2033961DOI10.1016/j.cma.2003.09.015
- Sun, S., Discontinuous Galerkin methods for reactive transport in porous media, Ph.D. thesis, The University of Texas, Austin (2003). (2003) MR2705499
- Vejchodský, T., Šolín, P., Zítka, M., 10.1016/j.matcom.2007.02.001, Math. Comput. Simul. 76 (2007), 223-228. (2007) Zbl1157.78356MR2392482DOI10.1016/j.matcom.2007.02.001
- Zienkiewicz, O. C., Wu, J., 10.1002/nme.1620371304, Int. J. Numer. Methods Eng. 37 (1994), 2189-2210. (1994) Zbl0810.76045MR1285070DOI10.1002/nme.1620371304
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.