Spectral condition, hitting times and Nash inequality
Eva Löcherbach; Oleg Loukianov; Dasha Loukianova
Annales de l'I.H.P. Probabilités et statistiques (2014)
- Volume: 50, Issue: 4, page 1213-1230
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topLöcherbach, Eva, Loukianov, Oleg, and Loukianova, Dasha. "Spectral condition, hitting times and Nash inequality." Annales de l'I.H.P. Probabilités et statistiques 50.4 (2014): 1213-1230. <http://eudml.org/doc/271947>.
@article{Löcherbach2014,
abstract = {Let $X$ be a $\mu $-symmetric Hunt process on a LCCB space $\mathtt \{E\}$. For an open set $\mathtt \{G\}\subseteq \mathtt \{E\}$, let $\tau _\{\mathtt \{G\}\}$ be the exit time of $X$ from $\mathtt \{G\}$ and $A^\{\mathtt \{G\}\}$ be the generator of the process killed when it leaves $\mathtt \{G\}$. Let $r:[0,\infty [\,\rightarrow [0,\infty [$ and $R(t)=\int _\{0\}^\{t\}r(s)\,\mathrm \{d\} s$. We give necessary and sufficient conditions for $\mathbb \{E\}_\{\mu \}R(\tau _\{\mathtt \{G\}\})<\infty $ in terms of the behavior near the origin of the spectral measure of $-A^\{\mathtt \{G\}\}$. When $r(t)=t^\{l\}$, $l\ge 0$, by means of this condition we derive the Nash inequality for the killed process. In the diffusion case this permits to show that the existence of moments of order $l+1$ for $\tau _\{\mathtt \{G\}\}$ implies the Nash inequality of order $p=\frac\{l+2\}\{l+1\}$ for the whole process. The associated rate of convergence of the semi-group in $\mathbb \{L\}^\{2\}(\mu )$ is bounded by $t^\{-(l+1)\}$. Finally, we show for general Hunt processes that the Nash inequality giving rise to a convergence rate of order $t^\{-(l+1)\}$ of the semi-group implies the existence of moments of order $l+1-\varepsilon $ for $\tau _\{\mathtt \{G\}\}$, for all $\varepsilon >0$.},
author = {Löcherbach, Eva, Loukianov, Oleg, Loukianova, Dasha},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {recurrence; hitting times; Dirichlet form; Nash inequality; weak Poincaré inequality; $\alpha $-mixing; continuous time Markov processes; continuous-time Markov processes; hitting times; Dirichlet form; Nash inequality; weak Poincaré inequality},
language = {eng},
number = {4},
pages = {1213-1230},
publisher = {Gauthier-Villars},
title = {Spectral condition, hitting times and Nash inequality},
url = {http://eudml.org/doc/271947},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Löcherbach, Eva
AU - Loukianov, Oleg
AU - Loukianova, Dasha
TI - Spectral condition, hitting times and Nash inequality
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 4
SP - 1213
EP - 1230
AB - Let $X$ be a $\mu $-symmetric Hunt process on a LCCB space $\mathtt {E}$. For an open set $\mathtt {G}\subseteq \mathtt {E}$, let $\tau _{\mathtt {G}}$ be the exit time of $X$ from $\mathtt {G}$ and $A^{\mathtt {G}}$ be the generator of the process killed when it leaves $\mathtt {G}$. Let $r:[0,\infty [\,\rightarrow [0,\infty [$ and $R(t)=\int _{0}^{t}r(s)\,\mathrm {d} s$. We give necessary and sufficient conditions for $\mathbb {E}_{\mu }R(\tau _{\mathtt {G}})<\infty $ in terms of the behavior near the origin of the spectral measure of $-A^{\mathtt {G}}$. When $r(t)=t^{l}$, $l\ge 0$, by means of this condition we derive the Nash inequality for the killed process. In the diffusion case this permits to show that the existence of moments of order $l+1$ for $\tau _{\mathtt {G}}$ implies the Nash inequality of order $p=\frac{l+2}{l+1}$ for the whole process. The associated rate of convergence of the semi-group in $\mathbb {L}^{2}(\mu )$ is bounded by $t^{-(l+1)}$. Finally, we show for general Hunt processes that the Nash inequality giving rise to a convergence rate of order $t^{-(l+1)}$ of the semi-group implies the existence of moments of order $l+1-\varepsilon $ for $\tau _{\mathtt {G}}$, for all $\varepsilon >0$.
LA - eng
KW - recurrence; hitting times; Dirichlet form; Nash inequality; weak Poincaré inequality; $\alpha $-mixing; continuous time Markov processes; continuous-time Markov processes; hitting times; Dirichlet form; Nash inequality; weak Poincaré inequality
UR - http://eudml.org/doc/271947
ER -
References
top- [1] N. Bouleau and F. Hirsch. Dirichlet Forms and Analysis on Wiener Space. de Gruyter Studies in Mathematics 14. de Gruyter, Berlin, 1991. Zbl0748.60046MR1133391
- [2] S. Balaji and S. Ramasubramanian. Passage time moments for multidimensional diffusions. J. Appl. Probab. 37 (1) (2000) 246–251. Zbl0965.60068MR1761674
- [3] P. Cattiaux and A. Guillin. Deviation bounds for additive functionals of Markov process. ESAIM Probab. Stat.12 (2008) 12–29. Zbl1183.60011MR2367991
- [4] P. Cattiaux, A. Guillin and P. A. Zitt. Poincaré inequalities and hitting times. Ann. Inst. Henri Poincaré Probab. Stat. 49 (1) (2013) 95–118. Zbl1270.26018MR3060149
- [5] R. Carmona and A. Klein. Exponential moments for hitting times of uniformly ergodic markov processes. Ann. Probab. 11 (3) (1983) 648–665. Zbl0523.60064MR704551
- [6] D. Down, S. P. Meyn and R. L. Tweedy. Exponential and uniform ergodicity of Markov processes. Ann. Probab. 23 (4) (1995) 1671–1691. Zbl0852.60075MR1379163
- [7] A. Friedman. The asymptotic behavior of the first real eigenvalue of a second Order Elliptic Operator with a small parameter in the highest derivatives. Indiana Univ. Math. J. 22 (10) (1973) 1005–1015. Zbl0245.35065MR320551
- [8] M. Fukushima, Y. Oshima and M. Takeda. Dirichlet Forms and Symmetric Markov Processes. de Gruyter Studies in Mathematics 19. de Gruyter, Berlin, 1994. Zbl0838.31001MR1303354
- [9] T. M. Liggett. rates of convergence for attractive reversible nearest particle system. Ann. Probab.19 (1991) 935–959. Zbl0737.60092MR1112402
- [10] O. Loukianov, D. Loukianova and S. Song. Spectral gaps and exponential integrability of hitting times for linear diffusions. Ann. Inst. Henri Poincaré Probab. Stat.47 (2011) 679–698. Zbl1233.60044MR2841071
- [11] P. Mathieu. Hitting times and spectral gap inequalities. Ann. Inst. Henri Poincaré Probab. Stat.33 (1997) 437–465. Zbl0894.60070MR1465797
- [12] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion. Grundlehren der Mathematischen Wissenschaften 293. Springer, Berlin, 1994. Zbl0804.60001MR1303781
- [13] E. Rio. Théorie asymptotique des processus aléatoires faiblement dépendants. Mathématiques et Applications (Paris) 31. Springer, Paris, 2000. Zbl0944.60008MR2117923
- [14] M. Röckner and F. Wang. Weak poincaré inequalities and -convergence rates of Markov semigroups. J. Funct. Anal.185 (2001) 564–603. Zbl1009.47028
- [15] A. Y. Veretennikov. On polynomial mixing bounds for stochastic differential equations. Stochastic Process. Appl.70 (1997) 115–127. Zbl0911.60042MR1472961
- [16] F. Wang. Functional Inequalities for the decay of sub-Markov semigroups. Potential Anal.18 (2003) 1–23. Zbl1022.47029MR1953493
- [17] F. Wang. Super and weak Poincaré inequalities for hypoelliptic operators. Acta Math. Appl. Sin. Engl. Ser. 25 (4) (2009) 617–630. Zbl1185.58019MR2544981
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.